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Abstract. We present a method that automatically partitions a single image into
non-overlapping regions coherent in texture and colour. An assumption that each
textured or coloured region can be represented by a small template, called the
seed, is used. Positioning of the seed across the input image gives many pos-
sible sub-segmentations of the image having same texture and colour property
as the pixels behind the seed. A probability map constructed during the sub-
segmentations helps to assign each pixel to just one most probable region and
produce the final pyramid representing various detailed segmentations at each
level. Each sub-segmentation is obtained as the min-cut/max-flow in the graph
built from the image and the seed. One segment may consist of several isolated
parts. Compared to other methods our approach does not need a learning pro-
cess or a priori information about the textures in the image. Performance of the
method is evaluated on images from the Berkeley database.

1 Introduction

Image segmentation can be viewed as a partitioning of an image into regions having
some similar properties, e.g. colour, texture, shape, etc, or as a partitioning of the image
into semantically meaningful parts (as people do). A common problem is that it is dif-
ficult to objectively measure the goodness of a segmentation produced for such a task.
Obtaining absolute ground truth is almost impossible since different people produce
different manual segmentations of the same images [1].

Recently, a method combining image segmentation, the detection of faces, and the
detection and reading of text in an integrated framework has appeared [2]. It is one
of the first attempts to look at segmentation as a knowledge-driven task. At the begin-
ning of the whole face/text recognition task a pre-segmentation of the image is per-
formed which is then iteratively improved by the recognition results. It turns out that
the knowledge-based approach using good initial segmentation leads to a reasonable
result towards recognition of the objects in images. Similarly, in [3] it is shown that the
image segmentation is an important first step in automatic annotation of pictures.

In this paper we concentrate on finding an initial segmentation without any a priori
knowledge such as an object database. The image is split automatically into regions
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Fig. 1. Automatic segmentation of the zebra image shown at the left. The three images on the
right show three dominant textures as three different regions produced by the proposed method.

having similar properties in terms of colour and texture. See Fig. 1, where zebras were
segmented due to different texture and colour to the grass background. This should be
useful in a cognitive vision system leading towards the understanding of an image, as
in [2, 3]. As psychophysics experiments have shown [4], at the beginning of the human
procedure leading to scene understanding, some pre-segmentation using boundaries and
regions is performed as well. Finally, humans use a huge object database in their brains
to tune the segmentation. Usually, even with large occlusions, strong shadows and geo-
metric distortions, humans still are able to recognize objects correctly.

There are many papers dealing with automatic segmentation. We have to mention the
well known work of Shi & Malik [5] based on normalized cuts which segments an im-
age into non-overlapping regions. They introduced a modification of graph cuts, namely
normalized graph cuts, and provided an approximate closed-form solution. However,
the boundaries of detected regions often do not follow the true boundaries of the ob-
jects. The work [6] is a follow-up to [5] where the segmentation is improved by doing
it at various scales.

The normalized cuts method has often been used with success in combination with
methods computing pixel neighborhood relations through brightness, colour and tex-
ture cues [7, 8, 9, 10]. See results [11] showing what automatic segmentation without
knowledge database using affinity functions [8] which were fed to an eigensolver to
cluster the image can achieve. In our experiments we used the same image dataset [12]
to easily compare the results.

There is another direction in image segmentation by using Level Set Methods
[13, 14]. The boundary of a textured foreground object is obtained by minimization
(through the evolution of the region contour) of energies inside and outside the region.

The main contribution of this paper lies in showing how a small image patch can
be used to automatically drive the image segmentation based on graph cuts resulting
in colour- and texture-coherent non-overlapping regions. Moreover, a new illumination
invariant similarity measure between histograms is designed. For finding min-cut/max-
flow in the graph we applied the algorithm [15] used for the user-driven image segmen-
tation for grayscale non-textured images [15, 16, 17] augmented to colour and textured
images in [18].

The proposed method works very well for images containing strong textures like
natural images, see Fig. 1. Compared to other methods our approach does not need a
learning process [8] or a priori information about the textures in the image [13]. The
method positions a circular patch, called the seed, to detect the whole region having
the same properties as the area covered by the seed. Many sub-segmentations produced
during the positioning of the seed are then merged together based on proposed similarity
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measures. To obtain semantically correct regions composed often of many segments
with different textures and colours some knowledge-based method would have to be
applied which, however, is out of the scope of this paper.

A similar idea for establishing seeds at salient points based on a spectral embedding
technique and min-cut in the graph appeared in [19]. However, we provide another more
intuitive solution to this problem.

The structure of the paper is as follows. The segmentation method is first explained
for one seed in Sec. 2 and then for multiple seeds together with combining and merg-
ing partial segmentations yielding the final segmentation pyramid in Sec. 3, outlined in
steps in Sec. 4. Finally an experimental evaluation and summary conclude the paper.

2 One Seed Segmentation

We use a seed segmentation technique [18] taking into account colour and texture based
on the interactive graph cut method [15]. The core of the segmentation method is based
on an efficient algorithm [16] for finding the min-cut/max-flow in a graph. At first we
very briefly outline the boundary detection and then the construction and segmentation
of the graph representing an image.

2.1 Boundary Detection

Our main emphasis is put on boundaries at the changes of different textured regions and
not local changes inside a single texture. However, there are usually large responses of
edge detectors inside textures. Therefore, in this paper we use as a cue the colour and
texture gradients introduced in [7, 9] to produce the combined boundary probability
image, see Fig. 5(b).

2.2 Graph Representing the Image

The general framework for building the graph is depicted in Fig. 2 (left). The graph is
shown here for a 9 pixel image and an 8-point neighborhood N . In general, the graph
has as many nodes as pixels plus two extra nodes labeled F , B. In addition, the pixel
neighborhood is larger, e.g. we use a window of size 21 × 21 pixels.

The neighborhood penalty between two pixels is defined as follows

Wq,r =
(

e−
g(q,r)2

σ2

)2

, g(q, r) = pb(q) + max
s∈Lq,r

pb(s) , (1)

where σ2 is a parameter (we used σ2 = 0.08 in all our experiments), pb(q) is the
combined boundary probability (Sec. 2.1) at point q and Lq,r = {x ∈ R

2 : x = q +
k(r−q), k ∈ (0, 1〉} is a set of points on a discretized line from the point q (exclusive)
to the point r (inclusive).

Each node in the graph is connected to the two extra nodes F , B. This allows the
incorporation of the information provided by the seed and a penalty for each pixel being
foreground or background to be set. The penalty of a point as being foreground F or
background B is defined as follows

RF|q = − ln p(B|cq), RB|q = − ln p(F|cq), (2)
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{q, F} λ RF|q ∀q
{q, B} λ RB|q ∀q

Fig. 2. Left: Graph representation for a 9 pixel image and a table defining the costs of graph
edges. Symbols are explained in the text. Right: Four binary image segmentations using various
positions of the seed.

where cq = (cL, ca, cb)� is a vector in R
3 of CIELAB values at the pixel q. The

CIELAB colour space has the advantage of being approximately perceptually uniform.
Furthermore, Euclidean distances in this space are perceptually meaningful as they cor-
respond to colour differences perceived by the human eye. Another reason for the good
performance of this space could be that in calculating the colour probabilities below,
we make the assumption that the three colour channels are statistically independent.
This assumption is better in the CIELAB space than in the RGB space. The posterior
probabilities are computed as

p(B|cq) =
p(cq|B)

p(cq|B) + p(cq|F)
, (3)

where the prior probabilities are

p(cq|F) = fL(cL) · fa(ca) · f b(cb), and p(cq|B) = bL(cL) · ba(ca) · bb(cb),

and f{L,a,b}(i), resp. b{L,a,b}(i), represents the foreground, resp. the background his-
togram of each colour channel separately at the ith bin smoothed by a Gaussian kernel.
We used 64 bins. The foreground histograms f{L,a,b} are computed from all pixels
behind the seed. The background histograms b{L,a,b} are computed from all pixels in
the image. See [18] for more details. λ in the table in Fig. 2 controls the importance of
foreground/background penalties against colour+texture penalties and was set to 1000.

After the graph is built the min-cut/max-flow splitting the graph and also the image
into two regions is found by the algorithm [16].

See segmentations resulting from various seed positions in Fig. 2 (right). It can be
seen that segmented foreground region has similar properties to the pixels behind the
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seed. Due to illumination changes, shadows and perspective distortion changing the
resolution of textures, the whole texture region is usually not marked as one region.
However, the segmented regions representing the same texture overlap which we use
in the procedure described in the next section to merge them and to build a probability
map yielding the segmentation.

3 Multiple Seed Segmentation

3.1 Seed Positioning

Each seed position gives one binary segmentation of the image, see Fig. 2(right). To
obtain image segmentation we move the seed across the image as follows.

A regular grid of initial seed positions is created, marked as black dots on small white
patches in Fig. 3(a). Using seeds at regular grid positions would segment two textured
regions as one segment. Since we want to find segments with a constant inner structure
we avoid cases where the seed crosses a strong response in the combined boundary
probability map in Fig. 5(b). Therefore we create a local neighborhood around each
initial position in the grid and the position of the seed which minimizes the sum of
values of pixels behind the seed in the combined probability map is looked for, i.e.

u∗ = argmin
u∈A

∑
v∈Su

pb(v), (4)

where u is a 2 element vector with (x, y)� image coordinates, Su is the seed (in our
case circular) area centered at the point u and A is a neighborhood rectangle around the
initial grid point. The neighborhood rectangles should not overlap to avoid the case of
identical seed positions having different initial points. We find the minimum in Eq. (4)
by brute force, i.e. the error is evaluated at all possible positions of the seed in the
neighborhood A because of low computational demand.

For each initial grid position, one u∗ is found and the segmentation method described
in Sec. 2 is applied using a seed positioned at u∗ to obtain a binary sub-segmentation.
The positions u∗ of the seeds for the leopard image are shown in Fig. 3(a).

(a) (b) (c)

Fig. 3. (a) The input image with automatically positioned seeds. (b) Probability maps for four
possible segments. Black corresponds to the higher probability, white to the lowest one. (c) Unas-
signed pixels.
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3.2 Combining Partial Segmentations

The sub-segmentations corresponding to the seeds are grouped together w.r.t. the size
of the mutual common area with other sub-segmentations. At the beginning of moving
the seed an empty list of potential segments is created. After the first run (first position
of the seed) the sub-segmentation is assigned to the first segment in the list. After each
consecutive run the actual sub-segmentation is compared to segments already stored in
the list. If there is any segment in the list overlapping with a specified fraction (we use
80%) of pixels then the sub-segmentation is summed to this segment. Otherwise a new
segment in the list is created.

Summing the sub-segmentations produces the probability with which each pixel be-
longs to each of the possible segments. The sum of values of pixels lying at the same
position in different segments in the list is used for normalization to get the value range
from 0 to 1. Fig. 3(b) shows an example of a four segment list obtained by applying
segmentations using seeds depicted in Fig. 3(a). There may still remain pixels which
were not assigned to any segment, see Fig. 3(c), which are treated in the merging stage
described later.

3.3 From Probability Map to Segments

The probability map constructed in the previous sub-section can be used to obtain the
a priori probability of each possible segment. Assuming that each segment is equally
important and no penalizations are applied, the decision following Bayes theorem leads to
choosing for each pixel the segment which has the highest support by sub-segmentations,
i.e. has highest a priori probability. For example, the tail of the leopard is present in three
segments, see Fig. 3(b). However, in the segment containing the whole leopard the pixels
corresponding to the tail have the highest probability to be assigned to this segment.
See Fig. 4 for the result. The list of segments L is represented by binary matrices Li, i.e.

L = {Li ∈ {0, 1}n×m : 0 ≤ i ≤ S},

where S is the number of segments. The matrix L0 stands for the segment containing
unassigned pixels.

For the leopard image after this stage we could be satisfied since the segmentation
captures the main regions. One possible region (top right in Fig. 3(b)) disappeared as no
pixels remained assigned to this segment after incorporating probabilities. However, the
non-overlapping segments having similar properties can sometimes be split due to illu-
mination changes. To observe this, look at the grass or the bear head in the bear image

Fig. 4. Segmentation after assigning the most probable segment to each pixel. The rightmost
image corresponds to unassigned pixels.
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(a) (b) (c)

Fig. 5. (a) The bear image with automatically positioned seeds. (b) Combined boundary proba-
bility image. (c) Possible segments. The last one corresponds to unassigned pixels.

segmentation in Fig. 5. Therefore, we incorporate a shadow-invariant colour space and
merge similar segments into one using a newly designed similarity measure described
in the following subsections.

3.4 Elimination of Unassigned Segments

We convert an input image into the c1c2c3 illumination invariant colour space [20].
Comparison and evaluation of various colour models in the sense of their invariance
can be found in [20]. The conversion from RGB to c1c2c3 colour space is done as
follows

c1 = arctan
R

max {G, B} , c2 = arctan
G

max {R, B} , c3 = arctan
B

max {R, G} .

We compute colour histograms h
{c1,c2,c3}
i from pixels marked in segment Li by 1’s

for 1 ≤ i ≤ S. We used 64 bins and smoothed the histograms by a Gaussian kernel.
We label an unassigned segment stored in the binary matrix L0 to separate all re-

gions in this image. For each region Rj in the segment L0, if its area is larger than
some threshold (we use 200 pixels), the new segment LS++ is added into the list of all
segments L. Otherwise, if the area is below the threshold, the region Rj is assigned to
the most probable segment i∗ in the list L w.r.t. to the following criterion

i∗(j) = argmax
1≤i≤S

∑
u∈Rj

hc1
i (I(u)c1) · hc2

i (I(u)c2) · hc3
i (I(u)c3), (5)

where I(u){c1,c2,c3} are c1, c2, c3 values of an image point at the position u. By this step
all pixels/regions in the unassigned segment L0 are eliminated, however, the number of
segments in the list L can increase.

3.5 Merging Segments

We observed that the change of illumination on the same surface does not change the
shape of the histograms, however, it causes their mutual shift. This motivated us to
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design a new illumination invariant similarity function between histograms based on
evaluating the shift.

At first, compute the cross-correlation between histograms of segments for each
colour channel separately and find the maximum values of cross-correlation in some
range 〈t1, t2〉, i.e.

r(i, j) =

⎛
⎝argmaxt1≤t≤t2 (hc1

i � hc1
j )(t)

argmaxt1≤t≤t2 (hc2
i � hc2

j )(t)
argmaxt1≤t≤t2 (hc3

i � hc3
j )(t)

⎞
⎠ , (6)

where � stands for cross-correlation. We show in Fig. 6 the cross-correlation of third
segment histograms with each of the other segments, i.e. (hc{1,2,3}

3 �h
c{1,2,3}
j )(t), for the

segments shown in Fig. 5(c). As can be seen the cross-correlations have single maxima
which can easily be detected. If there is no peak inside the interval bounded by t1, t2,
the distance is set to Inf . We use t2 = −t1 = 20. The interval should be reasonably
narrow since comparison of the same colours affected by shadows yields only small
displacement of the maxima. In contrast, comparison of different colours yields more
significant displacement and the distance between maxima is meaningless.

Let three elements of r(i, j) be sorted in a vector s = (s1, s2, s3)� such that s1 ≤
s2 ≤ s3. The squared distance of two histograms i, j is then evaluated as

d(i, j) = (s1 − s2)2 + (s3 − s2)2. (7)

The histogram distance in Eq. (7) computed for all pairs of segments is used for finding
most similar segment(s) in the list L. The segments which mutually match to each other
are merged together if the distance is below some threshold dthr. The level of merging
can be controlled by this threshold. Depending on the value various levels in the final
segmentation pyramid are created, see for example the three-level pyramid in Fig. 7. In
this case dthr was increasing from 10 to 200 while three levels were obtained.

From Fig. 6 it is evident that the grass segment (third segment in Fig. 5(c)) is most
similar to other green segments. The same happens to the bear’s head which is at first
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Fig. 7. Three-level pyramid of the bear image. Top row: First pyramid level with six segments.
Bottom row: Second level (five segments on the left) and third level (two rightmost segments).

divided into two parts in Fig. 5(c), however, at some level in the pyramid is merged
together.

4 Algorithm

We shortly summarize all the steps leading to the final single image segmentation:

1. Convert the image from the RGB colour space to the CIELAB space.
2. Compute the combined boundary gradient based on [7, 9] of the image.
3. Make a regular initial grid of seeds. For each initial seed position find a new optimal

position, Sec. 3.1, and compute a binary segmentation based on the min-cut/max-
flow in the graph, Sec. 2.

4. Combine segmentations yielding a probability map, Sec. 3.2, and create a list of
segments L, Sec. 3.3.

5. Eliminate unassigned pixels, Sec. 3.4, and merge similar segments based on the
illumination invariant similarity measure described in Sec. 3.5.

6. Depending on the chosen distance threshold dthr in the similarity measure, the
degree of segmentation coarseness is controlled and the final segmentation pyramid
is obtained.

5 Experimental Evaluation

To benchmark the results of the algorithms, we made use of the Berkeley segmentation
benchmark described in [1]. Two measures of the difference between two segmenta-
tions S1 and S2 are introduced in this paper, the Global and Local Consistency Errors
(GCE and LCE). As the GCE is a more demanding measure, we make use of only this
measure. There are other possibilities for benchmarking such as to use precision/recall
curves as in [19, 9].

We used the 200 colour images in the test group of the Berkeley Segmentation
Dataset [12] as well as the corresponding human segmentations. For each of the images,
at least 5 segmentations produced by different people are available. For each image, the
GCE of the segmentation produced by the tested algorithm with respect to each of the
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Fig. 8. Global Consistency Error (GCE) for human, normalized cuts (ncuts), Fowlkes et al. [8]
(fow) and our proposed method (seed) (from left). The top row shows variance of the GCE for
each image in the dataset. The bottom row shows the histogram of the GCE.

available human segmentations for that image was calculated. The mean of these values
gives the mean GCE per image, which was plotted in a histogram, see Fig. 8. The global
GCE was calculated as the mean of these 200 mean GCE values.

We compared human segmentations to each other and then with the normalized cuts
algorithm (ncuts) [5], Fowlkes et al. algorithm (fow) [8] and our seed algorithm (seed).
Comparison of human vs. human produces a very low GCE value which indicates the
consistency of the human segmentations. The “ncuts” and “fow” methods were applied
to the same combined boundary images as we used, mentioned in Sec. 2.1. Using the
same boundary gradient implies that the performance of the various methods is com-
pared using the same starting condition.

The implementation of the “ncuts” used (provided on the authors’ web page) requires
that the number of regions required be passed as a parameter. We used 5 as the average
number of segments per image for our seed segmentation was 4.3. There is a version of
the “ncuts” which determines the number of regions automatically [7], but we currently
have no implementation of it. The segmentations for the “fow” method were provided
directly by the author. In this segmentation, the average number of segments was 13.
See Tab. 1 for the results.

Table 1. Comparison of the methods. The first column contains the acronyms of the methods.
The second column corresponds to the average number of segments per image. The third column
shows the mean GCE error over all segmentations.

method # of reg GCE

hum 17 0.080

seed 4 0.209

fow 13 0.214

ncuts 5 0.336
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Usually as the number of regions per image grows it appears that the images become
more over-segmented. As is mentioned in [1] the GCE measure does not penalize an
over-segmentation. Our method and the “fow” method produce comparable GCE, how-
ever, the average number of segments of our method is less, approximately one third.
In some cases it means that our method does not split coherent regions.

Our segmentation method was implemented in MATLAB. Some of the most time
consuming operations (such as creating the graph edge weights) were implemented in
C and interfaced with MATLAB through mex-files. We used the online available C++
implementations of the min-cut algorithm [16] and some MATLAB code for colour and
texture gradient computation [7].

The method is relatively slow, for one 375x250 image with 96 seeds it needs on
average 15 minutes on a Pentium 4@2.8 GHz. However, the computation can easily be
parallelized as each sub-segmentation can be done independently on many computers.
The building of the weight matrix W representing the graph (which is done only once per
image) needs approximately 50 seconds. Once the graph is built, finding the min-cut for
one seed position takes 2 – 10 seconds.

Fig. 9. Some segmentation results on images from the Berkeley dataset

You may look at the results of the “fow” method [11] and our method1 to visu-
ally compare their performance. In general, both methods perform comparably, how-
ever, one method performs better on some images, the second one on others. This gives
an option to combine the methods in some further processing to choose the better re-
sult. Some segmentations using our method can be seen in Fig. 9. The results shown
here correspond to the threshold dthr equal to 10. The whole pyramid was built by
changing the dthr from 10 to 200. Each new level of pyramid is created when the
number of segments increases according to the previous level. Usually, 4 levels is the
maximum.

Constants (number of histogram bins, sigmas, etc.) which appear in the text are tuned
experimentally on real images to obtain reasonable performance on large data.

1 http://www.prip.tuwien.ac.at/Research/muscle/Images/ECCV06res
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6 Conclusion

The paper proposes a method for image segmentation into texture and colour coher-
ent segments. The segmentation combines known algorithms for computing combined
boundary gradient and for finding min-cut/max-flow in the graph. The novelty is in
introducing the positioning of the seed, and collecting and merging similar segments
yielding the segmentation pyramid. Moreover, an illumination invariant similarity mea-
sure is introduced.

We show that our method gives comparable results to the state-of-the-art methods
based on normalized graph cuts on the Berkeley dataset. We cannot say if the proposed
method outperforms existing methods since quantitative comparison of segmentations
is still an open problem. However, visual comparison as well as GCE comparison indi-
cate reasonable and useful results.
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18. Mičušı́k, B., Hanbury, A.: Supervised texture detection in images. In: Proc. Conference on
Computer Analysis of Images and Patterns (CAIP). (2005) 441–448

19. Estrada, F.J., Jepson, A.D.: Quantitative evaluation of a novel image segmentation algorithm.
In: Proc. CVPR. (2005) II: 1132–1139

20. Gevers, T., Smeulders, A.: Color-based object recognition. Pattern Recognition 32(3) (1999)
453–64


	Introduction
	One Seed Segmentation
	Boundary Detection
	Graph Representing the Image

	Multiple Seed Segmentation
	Seed Positioning
	Combining Partial Segmentations
	From ProbabilityMap to Segments
	Elimination of Unassigned Segments
	Merging Segments

	Algorithm
	Experimental Evaluation
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


