Advertisement

The S-Kernel and a Symmetry Measure Based on Correlation

  • Bertrand Zavidovique
  • Vito Di Gesù
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

Symmetry is an important feature in vision. Several detectors or transforms have been proposed. In this paper we concentrate on a measure of symmetry. Given a transform S, the kernel SK of a pattern is defined as the maximal included symmetric sub-set of this pattern. The maximum being taken over all directions, the problem arises to know which center to use. Then the optimal direction triggers the shift problem too. We prove that, in any direction, the optimal axis corresponds to the maximal correlation of a pattern with its flipped version. That leads to an efficient algorithm. As for the measure we compute a modified difference between respective surfaces of a pattern and its kernel. A series of experiments supports actual algorithm validation.

Keywords

Bilateral Symmetry Symmetric Pattern Symmetric Version Morphological Erosion Pattern Recognition Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Khöler, W., Wallach, H.: Figural after-effects: an investigation of visual processes. Proc. Amer. phil. Soc. 88, 269–357 (1944)Google Scholar
  2. 2.
    O’Mara, D.: Automated facial metrology, ch. 4, Symmetry detection and measurement. PhD thesis (February 2002)Google Scholar
  3. 3.
    Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern recognition 10, 167–180 (1978)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brady, M., Asada, H.: Smoothed Local Symmetries and their implementation. The International Journal of Robotics Research 3(3), 36–61 (1984)CrossRefGoogle Scholar
  5. 5.
    Sewisy, A., Lebert, F.: Detection of ellipses by finding lines of symmetry inthe images via an Hough transform applied to staright lines. Image and Vision Computing 19 - 12, 857–866 (2001)CrossRefGoogle Scholar
  6. 6.
    Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans.of PAMI 11, 104–108 (1989)zbMATHGoogle Scholar
  7. 7.
    Manmatha, R., Sawhney, H.: Finding symmetry in Intensity Images, Technical Report (1997)Google Scholar
  8. 8.
    Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images (the global optimization approach) (1997) (preprint)Google Scholar
  9. 9.
    Di Gesù, V., Valenti, C.: Symmetry operators in computer vision. Vistas in Astronomy, Pergamon 40(4), 461–468 (1996)CrossRefGoogle Scholar
  10. 10.
    Di Gesù, V., Valenti, C.: Detection of regions of interest via the Pyramid Discrete Symmetry Transform. In: Solina, K., Klette, B. (eds.) Advances in Computer Vision. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Cross, A.D.J., Hancock, E.R.: Scale space vector fields for symmetry detection. Image and Vision Computing 17, 5-6, 337–345 (1999)CrossRefGoogle Scholar
  12. 12.
    Shen, D., Ip, H., Teoh, E.K.: An energy of assymmetry for accurate detection of global reflexion axes. Image Vision and Computing 19, 283–297 (2001)CrossRefGoogle Scholar
  13. 13.
    Zabrodsky, H.: Symmetry - A review., Technical Report 90-16, CS Dep. The Hebrew University of JerusalemGoogle Scholar
  14. 14.
    DiGesu, V., Zavidovique, B.: A note on the Iterative Object Symmetry Transform. Pattern Recognition Letters 25, 1533–1545 (2004)CrossRefGoogle Scholar
  15. 15.
    Boyton, R.M., Elworth, C.L., Onley, J., Klingberg, C.L.: Form discrimination as predicted by overlap and area. RADC-TR-60-158 (1960)Google Scholar
  16. 16.
    Fukushima, S.: Division-based analysis of symmetry and its applications. IEEE PAMI 19-2 (1997)Google Scholar
  17. 17.
    Shen, D., Ip, H., Cheung, K.T., Teoh, E.K.: Symmetry detection by Generalized complex moments: a close-form solution. IEEE PAMI 21-5 (1999)Google Scholar
  18. 18.
    Bigun, J., DuBuf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervized texture segmentation. IEEE PAMI 16-1 (1994)Google Scholar
  19. 19.
    Masuda, T., Yamamoto, K., Yamada, H.: Detection of partial symmetyr using correlation with rotated-reflected images. Pattern Recognition 26-8 (1993)Google Scholar
  20. 20.
    O’Maraa, D., Owens, R.: Measuring bilateral symmetry in digital images. IEEE TENCON, Digital signal processing aplications (1996)Google Scholar
  21. 21.
    Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., Funkhouser, T.: A reflective symmetry descriptor. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 642–656. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Reisfeld, D., Wolfson, H., Yeshurun, Y.: Detection of interest points using symmetry. In: 3rd IEEE ICCV, Osaka, (December 1990)Google Scholar
  23. 23.
    Bonneh, Y., Reisfeld, D., Yeshurun, Y.: Texture discrimination by local generalized symmetry. In: 4th IEEE ICCV, Berlin (May 1993)Google Scholar
  24. 24.
    Merigot, A., Zavidovique, B.: Image analysis on massively parallel computers: An architectural point of view. J. of pattern recognition and artificial intelligence 6(2-3), 387–393 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bertrand Zavidovique
    • 1
  • Vito Di Gesù
    • 1
    • 2
  1. 1.IEFUniversity of Paris XI, ORSAYFrance
  2. 2.DMAUniversità di PalermoItaly

Personalised recommendations