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Abstract. Symmetry is an important feature in vision. Several detec-
tors or transforms have been proposed. In this paper we concentrate on a
measure of symmetry. Given a transform S, the kernel SK of a pattern is
defined as the maximal included symmetric sub-set of this pattern. The
maximum being taken over all directions, the problem arises to know
which center to use. Then the optimal direction triggers the shift prob-
lem too. We prove that, in any direction, the optimal axis corresponds to
the maximal correlation of a pattern with its flipped version. That leads
to an efficient algorithm. As for the measure we compute a modified dif-
ference between respective surfaces of a pattern and its kernel. A series
of experiments supports actual algorithm validation.

1 Introduction

This paper deals with measuring a degree of symmetry of 2D subsets of pictures.
It helps extracting objects. Symmetry is a prevalent feature in human percep-
tion. For instance the human face or body is approximately symmetric that is
exploited to assist in face recognition and detection. Psychologists of the Gestalt
school have assigned a relevant role to symmetry in attentive mechanism both in
visual and auditory systems [1, 15]. From the survey by Zabrodsky [13], we stress
upon results corroborating our own findings in the machine domain: - saliency of
vertical symmetry provided mental rotation : detections are in the order vertical,
horizontal, bent and then rotational symmetry; - parts near the axis contribute
more to symmetry than further parts near edges, themselves more critical than
regions in between.

The concept of symmetry is important in machine vision too as confirmed by
an extensive literature: a recent quite interesting survey is [2]. Models of sym-
metry suffer three drawbacks: - d1 - edges mainly support symmetry detection;
- d2 - perfect symmetry is targeted; - d3 - the center of mass is assumed to be
the focus of attention

Similar difficulties have been long solved for edges, regions or motion in ac-
tually measuring the phenomenon − edginess , uniformity , set-direction − to
decide after the measure rather than using a strict distance. We addressed d1

in [14] by defining iterative transforms as the IOT that better account for the
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inner object. In the present paper we tackle all di-difficulties together to opti-
mally solve the problem. The bibliography of section 2 suggests tools. In section
3, we introduce the notion of a “kernel” that stems logically from IOT through
a classical gauge in functional analysis. In section 4, preliminary study of the
main parameter - the optimal axis to spot - leads to an ultimate detection algo-
rithm based on correlation, and a general enough symmetry measure is derived.
A series of experiments in section 5, on both binary and grey scaled pictures,
allow to evaluate the technique, to check its sensitivity to the center position and
the validity of the degree of symmetry. Short discussion and further comments
conclude the paper.

2 State of the Art

The use of gray level information was firstly investigated in [6], where the sym-
metry descriptor is based on a cross correlation of gray levels. In [9], the search
for symmetries evaluates the axial moment of a body around its center of gravity.
Applied at a local level this descriptor defines the Discrete Symmetry Transform
(DST ). In [7], local reflectional symmetry is computed in convolving with the
first and second derivative of Gaussians. Each point gets both a symmetry “mea-
sure” and an axis orientation. Shen [17] or DuBuff [18] use complex moments
with Fourier or Gabor image approximation. It implies axes to pass through the
center of mass, and moments are not invariant to affine transforms.

In [8], authors introduce several descriptors from Marola’s one extended to
finite supports and varying scales based on the Radon and Fourier transforms.
Scale dependency is claimed to detect global symmetries without any prior seg-
mentation. The global optimization is then implemented by a probabilistic ge-
netic algorithm for speedup. Likewise, Shen and al. [12] detect symmetry in
seeking out the lack of it. The asymmetric term of their measure (energy) is
null for any pattern invariant through horizontal reflection, whence minimizing
that term over the image. In [11], a multi-scale (see also [10]) vector potential
is constructed from the gradient field of filtered images. Edge and symmetry
lines are extracted through a vector field (i.e. curl of the vector potential): sym-
metry axes are where the curl of the vector vanishes and edges are where the
divergence of the potential vanishes. Most described methods so far provide sym-
metry descriptors to compute measures from. Others aim at straight symmetry
measures. Comparing for instance Cross’s and Yeshurun’s, Yeshurun and al. [22]
build on the Blum-Asada vein [3], but in quantifying a potential for every pixel
to be centre of symmetry based on pairs of edge points tentatively symmetric
from their respective gradient vectors. A degree of symmetry is assigned to ev-
ery pair within a given pixel neighborhood and a weighted combination of these
makes the pixel potential, whose local maxima provide a measure depending on
both intensity and shape. The technique further extends to textures [23]. The
review of preceding works points out that: 1) comparing a pattern with its trans-
formed version, for invariance, can prevent from imposing the centroid as the
a priori focus of interest; 2) introducing true measures supports more abstract



186 B. Zavidovique and V. Di Gesù

versions of distances, founding approximate comparison; 3) sets which measures
apply on may be “sets of pixels or vectors”(shapes) or “sets of patterns” (in-
class transforms): in either case “set operations”, as Minkowski’s ones, are worth
considered. They do not limit to contours and bridge logic with geometry.

Three more works fit very well the algorithmic line above and are the closest
to ours, making clear the main contributions of this paper. In [19] the authors
correlate the image with its transformed version to by-pass the centroid. But
they do that on the inner product of (gaussian) gradients, hence on edges. R.
Owens [20] searches explicitly for a measure of symmetry to indicate approximate
bilateral symmetry of an isolated object. But she defines tentative symmetries
from the principal axes of inertia, whence the centroid again, before to compute
the sum of absolute differences of grey levels in symmetric pairs over the object,
normalized by their maximum. Note that, although it is not mentioned, such a
measure amounts to a slightly modified L1-difference between the object and a
maximal-for-inclusion symmetric version of it in the given direction. Kazhdan
et al. [21] target true visualization of symmetry over every point of a pattern.
They use explicitly the same idea of a difference (L2 in their case) between
the image and its closest symmetric version (the average of the picture and its
transform). But they need a measure that integrates all reflective invariance
about a bundle of straight lines (or planes in 3-D). It is robust to noise and
suitable for object matching, yet a center is necessary to this representation.
The representation plots for every direction the measure of symmetry about the
normal plane passing through the center of mass. Note that its local maxima
point out potential pattern symmetries.

3 The New Symmetry Measure

3.1 Symmetry Indicators (IOT )

In [14] we defined IOT that is a map product of iterated morphological erosion
and symmetry detection.

Definition 1. The Symmetry Transform, S, on a continuous object X ⊂ R2 is
given by:

Sα(X) =
∫

X

m(x) × ρ2(x, r(α))dx for α ∈ [0, π[ (1)

where, r(α) is the straight line with slope α passing through the center of gravity
of the object X, m(x) is the mass of the object in x ∈ X, and ρ is a distance
function of x from the straight line. ♦
Definition 2. The Iterated Object Transform, IOT , is given by:

IOTα,1(X) = Sα(X)

IOTα,n(X) = Sα

[
(E)n−1(X)

]
for n > 1 (8)
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(E)n stands for the morphological erosion by the unit sphere (or any other
suitable structuring element would any suitable a priori information be avail-
able), iterated n times.

The number of iterations depends on the image size and on the gray level
distribution. The S transform is thus computed on progressively shrunk versions
of the binary input image or on steadily intensity reduced versions of the gray
level input image, until some predefined decrease or a minimum of intensity is
reached. The iterated elongation, ηn(X), is defined as:

ηn(X) =
minα∈[0,π[ {IOTα,n(X)}
maxα∈[0,π[ {IOTα,n(X)} (8)

It represents dynamic changes of X shapes indicators versus n. Since in most
cases, η curves become flat or show some other type of constancy after a cer-
tain number of erosions, it was conjectured that any pattern larger than the
structuring element would have a symmetric kernel that IOT reveals (at least
one pixel remains after erosion to meet the definition). Let us call IOTK this
pattern. The intuitive idea here is that the closer the kernel to the pattern the
more symmetric pattern, although it is easy to design examples (see Figure 1)
where the IOTK is as “far” as wanted from the pattern.

Remark 1: when it proves necessary, this included version of the kernel could
be balanced by the including version obtained by dilation. Then the question
arises to define the kernel more formally.

3.2 Definition of the Kernel

Following commonly used gauges in functional analysis, a possible first answer
with a flavor of optimality would be maximal included symmetric pattern resp.
minimal including symmetric pattern.

Definition 3. The S-kernel of the pattern P - SK(P ) - is the maximal for
inclusion symmetric subset of P . Let us assume we applied the IOT and found
a stable pattern after multiple erosion, like the dark rectangle in the Figure 1c

(a) (b) (c)

Fig. 1. (a) Sketch of the kernel detection algorithm; (b) the kernel of the pattern in
(a); (c) expanding the IOTK of the pattern in (a) into the kernel
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(a) (b)

Fig. 2. (a) Searching for the symmetry axis of a function y = f(t) (plain line): its
symmetric version around x, Sx

f (t) (dotted line), and (b) the best symmetric version
of the face Figure 3-1b

(meaning after that, erosion will confirm symmetry and η remains constant).
Starting from there we expand the pattern and mark progressively every where
the expansion intersects the border, together with the symmetric pixel wrt. the
axis. Every marked pixel is not expanded further. That way the kernel should
be obtained again, provided the center of mass be stable. That makes the link
between the latter kernel and former indicators as IOTK.

Remark 2: the center of mass likely varies from the kernel to the pattern. This
introduces an additional question: how to define the likely symmetry axis where
to compute the kernel from?

For instance, let be µ = argMaxSymmetry(ptrn). How does Kµ(ptrn) com-
pare with K(ptrn)? How do their respective Symmetry relate? In most cases
Kµ(ptrn) should be a good enough gauge of K(ptrn), or the difference between
them will be most indicative. The following section is entirely devoted to answer-
ing that. All complementary tests will result into or from experiments described
in section 5.

4 Formal Setting and an Algorithm

The frame of the present study is not mandatorily that of an isolated pattern any
more. Considering operators to be used in the end, correlation, our conjecture is
rather of an attention focusing process based on symmetry. Introducing the latter
notion of interest implies that all non interesting regions around be faded to zero,
and that the pattern scan be started for instance at the very left of it. See below
the end of 4 and results in 5 for an illustration. Hence, the pattern f(x) gets a
bounded support and the origin of the x-axis can be where the interest starts.

4.1 Optimization of the Center Position

Let be (Figure 2): Sx
f (t) = f(x+t)+f(x−t)

2 the symmetric version of f with respect
to x. For the L2-norm, the best axis x∗ corresponds to:
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Sx∗(f) = minx

∫ b

a

[f(x + t) − f(x − t)]2 dt

Considering the above general frame, a can be set to 0 without any loss in
generality and support of f is included in that of Sx

f . f is assumed derivable
then bounded integrable. It comes:

d

dx
Sx(f) =

∫ b

0

d

dx
[f(x + t) − f(x − t)]2 dt

As f(x) = 0 for x < 0 and x > b,

d

dx
Sx(f) = 2

(∫ b

0

f(x + t) × f ′(x − t)dt −
∫ b

0

f ′(x + t) × f(x − t)dt

)

with x + t = u (resp. x − t = u) then x − t = 2x − u (resp. x + t = 2x − u)
∫ b

0

f ′(x + t) × f(x − t)dt =
∫ b+x

x

f(2x − u) × f ′(u)du

(resp.
∫ b

0
f(x + t) × f ′(x − t)dt =

∫ x

x−b
f(2x − u) × f ′(u)du))

f(t) and f ′(t) being null for t < 0, it comes in all cases:
∫ x+b

x−b

f(2x−u)×f ′(u)du =
∫ 2x

0

f(2x−u)×f ′(u)du = f ⊗f ′(2x)) =
d

dx
(f ⊗f)

with ⊗ the convolution product.

4.2 Correlation and Algorithm

Eventually Sx∗(f) corresponds to:(f ⊗ f)maximal or equivalently to:
∫ inf(2x,b)

sup(0,2x−b)
f(2x − u) × f ′(u)du = 0 whichever is easier to compute.

One gets yet another algorithm: find the maximum correlation of the picture
in a given direction (i.e. over all translations in this direction) with its mirror
symmetric in that direction (i.e. scanned right to left). Considering existing ef-
ficient algorithms for image geometric transforms (eg. cordic), rotations to span
directions can then be performed on the image before scans and correlation:
approximations need to be checked for the error introduced remain acceptable
(comparable to the one from sampled angles and discrete straight lines).

Remark 2: Note that if the image is tiled adapted to the predicted size of po-
tential symmetric objects, one can derive an efficient focusing process.

It is now obvious that considering the center of mass G for all potential
symmetry axes to go through amounts to an approximation of f by the square
term of its Taylor expansion, since it is defined by:

XG /

∫ b

0

(X − u)f(u)du =
1
2

∫ b

0

u2f ′(X − u)du = 0
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that is different in general from:

x∗ /

∫ inf(2x,b)

sup(0,2x−b)

f(u) × f ′(2x − u)du = 0

As for extending the result in 2 or 3-D, formulas are identical for f(t) with
t = (t, s) since both derivation and convolution are linear. Actually, one considers
Sx∗(f) = minx

∫∫
D

[f(x + t) − f(x − t)]2 dt.ds with x = (x, 0) and D bounded
by φ(t, s) = 0 determined otherwise or the rectangle frontier of the picture or
part of it. It leads to the same formal result since derivation deals with the single
variable x and that makes the case for grey scaled images.

Remark 3: The latter formal setting confirms that using the projection (Radon
transform) to extract symmetries from provides necessary conditions only since
the result of permuting integrals in d

dxSx∗(f) is not guaranteed. In the discrete
case, it is obvious how to build examples in shuffling column’s pixels to get a non
symmetric pattern from a symmetric one, still conserving the projection. Even
if nature and noise make this type of ambiguities quite rare, in case of multiple
symmetries one can be transformed into another by such permutation.

Remark 4: In cases where rotational symmetry would be explicitly looked for,
polar coordinates can be used. The same formal result holds too:

Sψ(f) =
∫ 2π

0

∫ ϕ(θ)

0

[f(ρ, θ) − f(ρ, θ + ψ)]2 ρ.dρdθ

since ρ is positive:

f(ρ, θ) = g(ρ2, θ) = g(u, θ) =⇒ Sψ(f) =
∫ 2π

0

∫√ϕ(θ)

0
[g(u, θ) − f(u, θ + ψ)]2 dudθ

It leads again to the same computation except the pole (center of rotation)
is assumed to be known, limiting the interest of the result.

4.3 Symmetry Measure

A preliminary simplifying assumption is made here: while the kernel was ex-
hibited, the picture is considered to have been binarized or at least the pattern
was cropped if it was not before. So, in order to test the proposed algorithm we
compute a measure of symmetry classically defined as:

λ1 = 1 − Area(D)
Area(A)

with A, the pattern or a binding sub-picture, B, its kernel, and Area(D) =
Area(A − B). Provided suitable binarization or windowing, it remains a ro-
bust first approximation where λ1 = 1 if Area(B) = Area(A). See results
in 5.1.
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5 Experimental Results and Further Comments

In this section we show some results of the application of the S-kernel algo-
rithm (SKA) to synthetic and real images. The purpose of experiments can
be summarized as follows: 1) validate the ability of the proposed method in
measuring the degree of symmetry, by comparing |η(SK(ptrn))− η(ptrn)| with
λ, and η(IOTK) with η(SK(ptrn)); 2) compute the kernel by correlation and
compare with IOTK ( from the algorithm in [14]); 3) compare the axis position
obtained by correlation with the best center position obtained after IOTK; 4)
check ability of the algorithm to support attention focusing from symmetry. All

Fig. 3. Sample gallery of images used for experiments: (a) binary; (b) gray level; (c)
textured

experiments are parameterized by direction and run on both binary and gray
level images (see Figure 3).

5.1 Evaluating the Correlation Algorithm

Figures 4 show examples of the similarity measures computed after correlation,
ρ and the similarity λ against the direction α. It is interesting that SKA is able
to grasp the circularity of the images 1c and the four axes of symmetry of the
image 2c.

Table 1 reports the results for all images in Figure 3. ρ (ρmax) indicates the
object direction α.

We tested the robustness of SKA by rotating the images of 45o and the
results of the computation were ρ = 0.89, α = 45.00o for the image 1b, and
ρ = 0.88, α = 135.00o for the image 2b.

The direction of images 1a, 2a, and 3a is close to human perceive, the long
nose of the sketched profile in image 4a forces the algorithm to an ”horizontal”
direction. A perfect agreement with IOTK exists for images 1b, 2b, 1c, and 2c.

Table 1. The correlation algorithm applied to images in Figure 3

Image 1a 2a 3a 4a 1b 2b 1c 2c
ρ 0.67 0.67 0.58 0.55 0.80 0.94 0.99 0.98
α 101.25o 112.50o 112.50o 157.50o 90.00o 90.00o 90.00o 0.00o

OST 0.86 0.93 0.87 0.80 0.72 0.92 0.90 0.96
αOST 112.50o 101.00o 56.25o 0.00o 90.00o 45.00o 90.00o 0.00o
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(a) (b) (c)

(d) (e)

Fig. 4. Examples of correlation and similarity measures for images in Figure 3: (a)
image 1a; (b) image 2a; (c) image 4a; (d) image 1c; (e) image 2c

We tested the ability of the correlation operator to exhibit circularity on the
image 1c by computing the mean value and the variance of ρ for all α and the
results was (0.96, 0.02).

5.2 Application to Attention Focusing

We tested the possibility of using kernel based operators to detect points of
interest in complex images. Examples of such images are shown in Figures 5a,b;
they represent a famous painting by Tintoretto and a group photo under natural
illuminating conditions. In both images the goal was to detect the directions of
the most symmetric objects of a given size. For example in the group photo the
direction of people faces.

The procedure consists in raster scanning the input image with a window,
size of which is set on the basis of the human face dimensions scaled to the input
frame. Inside each window kernel-based operators are computed. The algorithm
returns all windows for which the value of λ (ρ) is greater than a given threshold
φ ∈ [0, 1]. Here, the threshold was set to the mean value of λ (ρ) in all experi-
ments. A great value of λ (ρ) in a given direction indicates a bilateral symmetry
typical of face like objects. The Figure 5 shows the results from SKA. Not all
objects with high bilateral symmetry are faces. Nevertheless the method was
able to extract all face positions, introducing an error of 17% in the evaluation
of the face direction; over all experiments the percentage of not faces was 21%.
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(a) (b)

Fig. 5. Attention focusing by symmetry from (SKA): (a) Group of women (Tintoretto
1545-1588); (b) group photo

6 Concluding Remarks

This paper describes a new measure of axial symmetry derived from a new object
feature named the “symmetry-kernel”. The symmetry kernel of an object is its
maximal subpart symmetric respective to a given direction. A new algorithm
is derived from, based on the computation of the cross-correlation of an object
with its flipped version. It is fast and not sensitive to numerical factors because
computations are inner products. The algorithm was tested on both synthetic
and real data. Experiments show the ability of the symmetry-kernel to detect
the main directionality of an object. It has been also implemented as a local
operator to detect the presence of objects in a scene and their direction. The
evaluation of the distance between an object and its kernel is a crucial point and
needs further investigation.

References
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