Advertisement

Insulin-Like Growth Factor 1 in the Cardiovascular System

  • Gabriel A. Aguirre
  • José Luis González-Guerra
  • Luis Espinosa
  • Inma Castilla-CortazarEmail author
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 175)

Abstract

Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.

Keywords

Atherosclerosis Cardiovascular disease Cardiovascular system IGF1 Metabolic syndrome 

Notes

Acknowledgements

We would like to give a very special thanks to MSc Irene Martín del Estal for her support and to Oliver Gómez Gutierrez, senior medical student at Tecnológico de Monterrey, for his invaluable contribution in figure editing.

Disclosure Statement

Authors declare to have no competing or financial interests.

Financial Information

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

References

  1. Aberg D (2010) Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Endocr Dev 17:63–76.  https://doi.org/10.1159/000262529CrossRefPubMedGoogle Scholar
  2. Aberg D, Jood K, Blomstrand C et al (2011) Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab 96:E1055–E1064.  https://doi.org/10.1210/jc.2010-2802CrossRefPubMedGoogle Scholar
  3. Adams TE, Epa VC, Garrett TPJ, Ward CW (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57:1050–1093.  https://doi.org/10.1007/PL00000744CrossRefPubMedGoogle Scholar
  4. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14:3.  https://doi.org/10.1186/s12967-015-0762-zCrossRefPubMedCentralPubMedGoogle Scholar
  5. Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 120:1640–1645CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alsaied T, Omar K, James JF et al (2017) Fetal origins of adult cardiac disease: a novel approach to prevent fetal growth restriction induced cardiac dysfunction using insulin like growth factor. Pediatr Res 81:919–925.  https://doi.org/10.1038/pr.2017.18CrossRefPubMedGoogle Scholar
  7. Ambler GR, Johnston BM, Maxwell L et al (1993) Improvement of doxorubicin induced cardiomyopathy in rats treated with insulin-like growth factor I. Cardiovasc Res 27:1368–1373CrossRefPubMedGoogle Scholar
  8. Andreassen M, Raymond I, Kistorp C et al (2009) IGF1 as predictor of all cause mortality and cardiovascular disease in an elderly population. Eur J Endocrinol 160:25–31.  https://doi.org/10.1530/EJE-08-0452CrossRefPubMedGoogle Scholar
  9. Anversa P, Kajstura J, Rota M, Leri A (2013) Regenerating new heart with stem cells. J Clin Invest 123:62–70.  https://doi.org/10.1172/JCI63068CrossRefPubMedCentralPubMedGoogle Scholar
  10. Anwar A (2002) Tumor necrosis factor-alpha regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 105:1220–1225.  https://doi.org/10.1161/hc1002.105187CrossRefPubMedGoogle Scholar
  11. Aoi N, Nakayama T, Soma M et al (2010) Association of the insulin-like growth factor1 gene with myocardial infarction in Japanese subjects. Hereditas 147:215–224.  https://doi.org/10.1111/j.1601-5223.2010.02174.xCrossRefPubMedGoogle Scholar
  12. Arantes LAM, Aguiar CJ, Amaya MJ et al (2012) Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy. J Mol Cell Cardiol 53:475–486.  https://doi.org/10.1016/j.yjmcc.2012.06.017CrossRefPubMedGoogle Scholar
  13. Arcopinto M, Bobbio E, Bossone E et al (2013) The GH/IGF-1 axis in chronic heart failure. Endocr Metab Immune Disord Drug Targets 13:76–91CrossRefPubMedGoogle Scholar
  14. Backeljauw PF, Underwood LE, GHIS Collaborative Group. Growth hormone insensitivity syndrome (2001) Therapy for 6.5-7.5 years with recombinant insulin-like growth factor I in children with growth hormone insensitivity syndrome: a clinical research center study. J Clin Endocrinol Metab 86:1504–1510.  https://doi.org/10.1210/jcem.86.4.7381CrossRefPubMedGoogle Scholar
  15. Berelowitz M, Szabo M, Frohman LA et al (1981) Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science 212:1279–1281.  https://doi.org/10.1126/science.6262917CrossRefPubMedGoogle Scholar
  16. Berg U, Bang P (2004) Exercise and circulating insulin-like growth factor I. Horm Res 62(Suppl 1):50–58.  https://doi.org/10.1159/000080759CrossRefPubMedGoogle Scholar
  17. Bers DM (2013) Membrane receptor neighborhoods: snuggling up to the nucleus. Circ Res 112:224–226.  https://doi.org/10.1161/CIRCRESAHA.112.300494CrossRefPubMedCentralPubMedGoogle Scholar
  18. Bitto A, Lerner C, Torres C et al (2010) Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One 5:1–10.  https://doi.org/10.1371/journal.pone.0012592CrossRefGoogle Scholar
  19. Bleumink GS, Rietveld I, Janssen JAMJL et al (2004) Insulin-like growth factor-I gene polymorphism and risk of heart failure (the Rotterdam Study). Am J Cardiol 94:384–386.  https://doi.org/10.1016/j.amjcard.2004.04.044CrossRefPubMedGoogle Scholar
  20. Bleumink GS, Schut a FC, Sturkenboom MCJM et al (2005) A promoter polymorphism of the insulin-like growth factor-I gene is associated with left ventricular hypertrophy. Heart 91:239–240.  https://doi.org/10.1136/hrt.2003.019778CrossRefPubMedCentralPubMedGoogle Scholar
  21. Böni-Schnetzler M, Schmid C, Meier PJ, Froesch ER (1991) Insulin regulates insulin-like growth factor I mRNA in rat hepatocytes. Am J Physiol 260:E846–E851PubMedGoogle Scholar
  22. Boonen S, Rosen C, Bouillon R et al (2002) Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 87:1593–1599.  https://doi.org/10.1210/jcem.87.4.8426CrossRefPubMedGoogle Scholar
  23. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897.  https://doi.org/10.1038/29788CrossRefPubMedGoogle Scholar
  24. Boström P, Frisén J (2013) New cells in old hearts. N Engl J Med 368:1358–1360.  https://doi.org/10.1056/NEJMcibr1300157CrossRefPubMedGoogle Scholar
  25. Brahm H, Piehl-Aulin K, Saltin B, Ljunghall S (1997) Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise. Calcif Tissue Int 60:175–180CrossRefPubMedGoogle Scholar
  26. Brevetti G, Colao A, Schiano V et al (2008) IGF system and peripheral arterial disease: relationship with disease severity and inflammatory status of the affected limb. Clin Endocrinol (Oxf) 69:894–900.  https://doi.org/10.1111/j.1365-2265.2008.03269.xCrossRefGoogle Scholar
  27. Bright GM, Mendoza JR, Rosenfeld RG (2009) Recombinant human insulin-like growth factor-1 treatment: ready for primetime. Endocrinol Metab Clin North Am 38:625–638CrossRefPubMedGoogle Scholar
  28. Brownsey RW, Boone AN, Allard MF (1997) Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovasc Res 34:3–24CrossRefPubMedGoogle Scholar
  29. Castellano G, Affuso F, Di Conza P, Fazio S (2009) The GH/IGF-1 axis and heart failure. Curr Cardiol Rev 5:203–215.  https://doi.org/10.2174/157340309788970306CrossRefPubMedCentralPubMedGoogle Scholar
  30. Castilla-Cortázar I, Gago A, Muñoz Ú et al (2015a) Mechanisms underlying testicular damage and dysfunction in mice with partial IGF-1 deficiency and the effectiveness of IGF-1 replacement therapy. Urology.  https://doi.org/10.1016/j.urology.2015.09.012
  31. Castilla-Cortázar I, Gago A, Muñoz Ú et al (2015b) Mechanisms underlying testicular damage and dysfunction in mice with partial IGF-1 deficiency and the effectiveness of IGF-1 replacement therapy. Urology.  https://doi.org/10.1016/j.urology.2015.09.012
  32. Castilla-Cortázar I, Gago A, Muñoz Ú et al (2015c) Mechanisms underlying testicular damage and dysfunction in mice with partial IGF-1 deficiency and the effectiveness of IGF-1 replacement therapy. Urology 86:1241.e1–1241.e9.  https://doi.org/10.1016/j.urology.2015.09.012CrossRefGoogle Scholar
  33. Castilla-Cortázar I, García-Fernández M, Delgado G et al (2011) Hepatoprotection and neuroprotection induced by low doses of IGF-II in aging rats. J Transl Med 9:103.  https://doi.org/10.1186/1479-5876-9-103CrossRefPubMedCentralPubMedGoogle Scholar
  34. Castilla-Cortazar I, Garcia M, Muguerza B et al (1997a) Hepatoprotective effects of insulin-like growth factor I in rats with carbon tetrachloride-induced cirrhosis. Gastroenterology 113:1682–1691.  https://doi.org/10.1053/gast.1997.v113.pm9352873CrossRefPubMedGoogle Scholar
  35. Castilla-Cortazar I, Garcia M, Muguerza B et al (1997b) Hepatoprotective effects of insulin-like growth factor I in rats with carbon tetrachloride-induced cirrhosis. Gastroenterology 113:1682–1691CrossRefPubMedGoogle Scholar
  36. Castilla-Cortazar I, Garcia M, Quiroga J et al (2000) Insulin-like growth factor-I reverts testicular atrophy in rats with advanced cirrhosis. Hepatology 31:592–600.  https://doi.org/10.1002/hep.510310308CrossRefPubMedGoogle Scholar
  37. Castilla-Cortazar I, Guerra L, Puche JE et al (2014) An experimental model of partial insulin-like growth factor-1 deficiency in mice. J Physiol Biochem 70:129–139.  https://doi.org/10.1007/s13105-013-0287-yCrossRefPubMedGoogle Scholar
  38. Castilla-Cortázar I, Pascual M, Urdaneta E et al (2004) Jejunal microvilli atrophy and reduced nutrient transport in rats with advanced liver cirrhosis: improvement by insulin-like growth factor I. BMC Gastroenterol 4:12.  https://doi.org/10.1186/1471-230X-4-12CrossRefPubMedCentralPubMedGoogle Scholar
  39. Chen JW, Ledet T, Orskov H et al (2003) A highly sensitive and specific assay for determination of IGF-I bioactivity in human serum. Am J Physiol Endocrinol Metab 284:E1149–E1155.  https://doi.org/10.1152/ajpendo.00410.2002CrossRefPubMedGoogle Scholar
  40. Cheng S-Q, Qiang H, Fu R, Pan K-L (2015) Improvement in cardiac morphology and function in young rats with dilated cardiomyopathy by recombinant human growth hormone. Zhongguo Dang Dai Er Ke Za Zhi 17:508–514PubMedGoogle Scholar
  41. Chiong M, Wang ZV, Pedrozo Z et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244.  https://doi.org/10.1038/cddis.2011.130CrossRefPubMedCentralPubMedGoogle Scholar
  42. Chitnis MM, Yuen JSP, Protheroe AS et al (2008a) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370CrossRefPubMedGoogle Scholar
  43. Chitnis MM, Yuen JSP, Protheroe AS et al (2008b) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370.  https://doi.org/10.1158/1078-0432.CCR-07-4879CrossRefPubMedGoogle Scholar
  44. Choi AMK, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662.  https://doi.org/10.1056/NEJMra1205406CrossRefPubMedGoogle Scholar
  45. Chugh S, Ouzounian M, Lu Z et al (2013) Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure. Proteomics 13:2324–2334.  https://doi.org/10.1002/pmic.201200455CrossRefPubMedCentralPubMedGoogle Scholar
  46. Chung H, Seo S, Moon M, Park S (2007) IGF-I inhibition of apoptosis is associated with decreased expression of prostate apoptosis response-4. J Endocrinol 194:77–85CrossRefPubMedGoogle Scholar
  47. Clemmons DR (1998) Role of insulin-like growth factor binding proteins in controlling IGF actions. In: Molecular and cellular endocrinology. pp 19–24Google Scholar
  48. Clemmons DR (2006) Involvement of insulin-like growth factor-I in the control of glucose homeostasis. Curr Opin Pharmacol 6:620–625.  https://doi.org/10.1016/j.coph.2006.08.006CrossRefPubMedGoogle Scholar
  49. Clemmons DR (2012) Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol Metab Clin North Am 41:425–443.  https://doi.org/10.1016/j.ecl.2012.04.017CrossRefPubMedCentralPubMedGoogle Scholar
  50. Clemmons DR, Moses AC, McKay MJ et al (2000) The combination of insulin-like growth factor I and insulin-like growth factor-binding protein-3 reduces insulin requirements in insulin-dependent type 1 diabetes: evidence for in vivo biological activity. J Clin Endocrinol Metab 85:1518–1524.  https://doi.org/10.1210/jcem.85.4.6559CrossRefPubMedGoogle Scholar
  51. Clemmons DR, Moses AC, Sommer A et al (2005) Rh/IGF-I/rhIGFBP-3 administration to patients with type 2 diabetes mellitus reduces insulin requirements while also lowering fasting glucose. Growth Horm IGF Res 15:265–274.  https://doi.org/10.1016/j.ghir.2005.05.002CrossRefPubMedGoogle Scholar
  52. Cohen P, Germak J, Rogol AD et al (2010) Variable degree of growth hormone (GH) and insulin-like growth factor (IGF) sensitivity in children with idiopathic short stature compared with GH-deficient patients: evidence from an IGF-based dosing study of short children. J Clin Endocrinol Metab 95:2089–2098.  https://doi.org/10.1210/jc.2009-2139CrossRefPubMedGoogle Scholar
  53. Cohen P, Rogol AD, Deal CL et al (2008) Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J Clin Endocrinol Metab 93:4210–4217.  https://doi.org/10.1210/jc.2008-0509CrossRefPubMedGoogle Scholar
  54. Colangelo LA, Liu K, Gapstur SM (2004) Insulin-like growth factor-1, insulin-like growth factor binding protein-3, and cardiovascular disease risk factors in young black men and white men: the CARDIA Male Hormone Study. Am J Epidemiol 160:750–757.  https://doi.org/10.1093/aje/kwh289CrossRefPubMedGoogle Scholar
  55. Conchillo M, De Knegt RJ, Payeras M et al (2005) Insulin-like growth factor I (IGF-I) replacement therapy increases albumin concentration in liver cirrhosis: results of a pilot randomized controlled clinical trial. J Hepatol 43:630–636.  https://doi.org/10.1016/j.jhep.2005.03.025CrossRefPubMedGoogle Scholar
  56. D’Amario D, Cabral-Da-Silva MC, Zheng H et al (2011) Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res 108:1467–1481.  https://doi.org/10.1161/CIRCRESAHA.111.240648CrossRefPubMedCentralPubMedGoogle Scholar
  57. D’Ercole AJ, Stiles AD, Underwood LE (1984) Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci U S A 81:935–939.  https://doi.org/10.1073/pnas.81.3.935CrossRefPubMedCentralPubMedGoogle Scholar
  58. Dalle S, Ricketts W, Imamura T et al (2001) Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem 276:15688–15695.  https://doi.org/10.1074/jbc.M010884200CrossRefPubMedGoogle Scholar
  59. Davis ME, Hsieh PCH, Takahashi T et al (2006a) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci 103:8155–8160.  https://doi.org/10.1073/pnas.0602877103CrossRefPubMedGoogle Scholar
  60. Davis ME, Hsieh PCH, Takahashi T et al (2006b) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103:8155–8160.  https://doi.org/10.1073/pnas.0602877103CrossRefPubMedCentralPubMedGoogle Scholar
  61. De Ita JR, Castilla-Cortázar I, Aguirre GA et al (2015) Altered liver expression of genes involved in lipid and glucose metabolism in mice with partial IGF-1 deficiency: an experimental approach to metabolic syndrome. J Transl Med 13:326.  https://doi.org/10.1186/s12967-015-0684-9CrossRefPubMedCentralPubMedGoogle Scholar
  62. De Meyts P, Whittaker J (2002a) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783.  https://doi.org/10.1038/nrd917CrossRefPubMedGoogle Scholar
  63. De Meyts P, Whittaker J (2002b) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783.  https://doi.org/10.1038/nrd917CrossRefPubMedGoogle Scholar
  64. Debroy MA, Wolf SE, Zhang XJ et al (1999) Anabolic effects of insulin-like growth factor in combination with insulin-like growth factor binding protein-3 in severely burned adults. J Trauma 47:904–910CrossRefPubMedGoogle Scholar
  65. Delaughter MC, Taffet GE, Fiorotto ML et al (1999) Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J 13:1923–1929CrossRefPubMedGoogle Scholar
  66. Diaz-Araya G, Borg TK, Lavandero S et al (2003) IGF-1 modulation of rat cardiac fibroblast behavior and gene expression is age-dependent. Cell Commun Adhes 10:155–165CrossRefPubMedGoogle Scholar
  67. Dinleyici EC, Kilic Z, Buyukkaragoz B et al (2007) Serum IGF-1, IGFBP-3 and growth hormone levels in children with congenital heart disease: relationship with nutritional status, cyanosis and left ventricular functions. Neuro Endocrinol Lett 28:279–283PubMedGoogle Scholar
  68. Donath MY, Sütsch G, Yan XW et al (1998) Acute cardiovascular effects of insulin-like growth factor I in patients with chronic heart failure. J Clin Endocrinol Metab 83:3177–3183.  https://doi.org/10.1210/jcem.83.9.5122CrossRefPubMedGoogle Scholar
  69. Ebeling PR, Jones JD, O’Fallon WM et al (1993) Short-term effects of recombinant human insulin-like growth factor I on bone turnover in normal women. J Clin Endocrinol Metab 77:1384–1387.  https://doi.org/10.1210/jc.77.5.1384CrossRefPubMedGoogle Scholar
  70. Ebinger M, Ipsen N, Leonards CO et al (2015) Circulating insulin-like growth factor binding protein-3 predicts one-year outcome after ischemic stroke. Exp Clin Endocrinol Diabetes 123:461–465.  https://doi.org/10.1055/s-0035-1554632CrossRefPubMedGoogle Scholar
  71. Efstratiadis G, Tsiaousis G, Athyros VG et al (2006) Total serum insulin-like growth factor-1 and C-reactive protein in metabolic syndrome with or without diabetes. Angiology 57:303–311.  https://doi.org/10.1177/000331970605700306CrossRefPubMedGoogle Scholar
  72. Expert Panel on Detection, Evaluation and T of HBC in A (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497.  https://doi.org/10.1001/jama.285.19.2486CrossRefGoogle Scholar
  73. Fan J, Char D, Bagby GJ et al (1995) Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding proteins by tumor necrosis factor. Am J Physiol 269:R1204–R1212PubMedGoogle Scholar
  74. Federici M, Porzio O, Lauro D et al (1998) Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab 83:2911–2915.  https://doi.org/10.1210/jcem.83.8.4935CrossRefPubMedGoogle Scholar
  75. Feigin VL, Roth GA, Naghavi M et al (2016) Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 15(9):913–924.  https://doi.org/10.1016/S1474-4422(16)30073-4CrossRefPubMedGoogle Scholar
  76. Fernández-Solà J, Borrisser-Pairó F, Antúnez E, Tobías E (2015a) Myostatin and insulin-like growth factor-1 in hypertensive heart disease: a prospective study in human heart donors. J Hypertens 33:851–858.; discussion 859.  https://doi.org/10.1097/HJH.0000000000000493CrossRefPubMedGoogle Scholar
  77. Fernández-Solà J, Borrisser-Pairó F, Antúnez E, Tobías E (2015b) Myostatin and insulin-like growth factor-1 in hypertensive heart disease: a prospective study in human heart donors. J Hypertens 33:851–858.; discussion 859.  https://doi.org/10.1097/HJH.0000000000000493CrossRefPubMedGoogle Scholar
  78. Ferreira-Martins J, Rondon-Clavo C, Tugal D et al (2009) Spontaneous calcium oscillations regulate human cardiac progenitor cell growth. Circ Res 105:764–774.  https://doi.org/10.1161/CIRCRESAHA.109.206698CrossRefPubMedCentralPubMedGoogle Scholar
  79. Fischer F, Schulte H, Mohan S et al (2004) Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin Endocrinol (Oxf) 61:595–602.  https://doi.org/10.1111/j.1365-2265.2004.02136.xCrossRefGoogle Scholar
  80. Flier JS, Underhill LH, Le Roith D (1997) Insulin-like growth factors. N Engl J Med 336:633–640CrossRefGoogle Scholar
  81. Foncea R, Andersson M, Ketterman A et al (1997) Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272:19115–19124.  https://doi.org/10.1074/jbc.272.31.19115CrossRefPubMedGoogle Scholar
  82. Fournier T, Riches DW, Winston BW et al (1995) Divergence in macrophage insulin-like growth factor-I (IGF-I) synthesis induced by TNF-alpha and prostaglandin E2. J Immunol 155:2123–2133PubMedGoogle Scholar
  83. Fowlkes JL, Serra DM, Bunn RC et al (2004) Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes. Endocrinology 145:620–626.  https://doi.org/10.1210/en.2003-0636CrossRefPubMedGoogle Scholar
  84. Gallagher EJ, LeRoith D (2010) The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol Metab 21:610–618.  https://doi.org/10.1016/j.tem.2010.06.007CrossRefPubMedCentralPubMedGoogle Scholar
  85. Gandhi PU, Gaggin HK, Sheftel AD et al (2014) Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction: a novel biomarker of myocardial diastolic function? Am J Cardiol 114:1543–1549.  https://doi.org/10.1016/j.amjcard.2014.08.018CrossRefPubMedGoogle Scholar
  86. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698.  https://doi.org/10.1016/j.stem.2013.05.008CrossRefPubMedCentralPubMedGoogle Scholar
  87. García-Fernández M, Castilla-Cortázar I, Díaz-Sanchez M et al (2005a) Antioxidant effects of insulin-like growth factor-I (IGF-I) in rats with advanced liver cirrhosis. BMC Gastroenterol 5:7.  https://doi.org/10.1186/1471-230X-5-7CrossRefPubMedCentralPubMedGoogle Scholar
  88. García-Fernández M, Castilla-Cortázar I, Díaz-Sanchez M et al (2005b) Antioxidant effects of insulin-like growth factor-I (IGF-I) in rats with advanced liver cirrhosis. BMC Gastroenterol 5:7.  https://doi.org/10.1186/1471-230X-5-7CrossRefPubMedCentralPubMedGoogle Scholar
  89. García-Fernández M, Castilla-Cortázar I, Díaz-Sánchez M et al (2003) Effect of IGF-I on total serum antioxidant status in cirrhotic rats. J Physiol Biochem 59:145–146.  https://doi.org/10.1007/BF03179879CrossRefPubMedGoogle Scholar
  90. García-Fernández M, Delgado G, Puche JE et al (2008) Low doses of insulin-like growth factor I improve insulin resistance, lipid metabolism, and oxidative damage in aging rats. Endocrinology 149:2433–2442.  https://doi.org/10.1210/en.2007-1190CrossRefPubMedGoogle Scholar
  91. Garcia-Fernandez M, Sierra I, Puche JE et al (2011) Liver mitochondrial dysfunction is reverted by insulin-like growth factor II (IGF-II) in aging rats. J Transl Med 9:123.  https://doi.org/10.1186/1479-5876-9-123CrossRefPubMedCentralPubMedGoogle Scholar
  92. Gatenby VK, Kearney MT (2010) The role of IGF-1 resistance in obesity and type 2 diabetes-mellitus-related insulin resistance and vascular disease. Expert Opin Ther Targets 14:1333–1342.  https://doi.org/10.1517/14728222.2010.528930CrossRefPubMedGoogle Scholar
  93. Genead R, Fischer H, Hussain A et al (2012) Ischemia-reperfusion injury and pregnancy initiate time-dependent and robust signs of up-regulation of cardiac progenitor cells. PLoS One 7:e36804.  https://doi.org/10.1371/journal.pone.0036804CrossRefPubMedCentralPubMedGoogle Scholar
  94. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead review. Cell 104:503–516.  https://doi.org/10.1016/S0092-8674(01)00238-0CrossRefPubMedGoogle Scholar
  95. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984.  https://doi.org/10.1016/j.biocel.2005.04.018CrossRefPubMedGoogle Scholar
  96. González-Guerra JL, Castilla-Cortazar I, Aguirre GA, Muñoz U, Martín-Estal I, Ávila-Gallego E, Granado M, Puche JE, García-Villalón A (2017a) The sole partial insulin-like growth factor (IGF-1) deficiency reduces heart contractibility, angiotensin II sensibility, and alters gene expression of structural and functional cardiac proteinsGoogle Scholar
  97. González-Guerra JL, Castilla-Cortazar I, Aguirre GA et al (2017b) Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins. PLoS One 12(8):e0181760.  https://doi.org/10.1371/journal.pone.0181760
  98. Gosling J, Slaymaker S, Gu L et al (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103:773–778.  https://doi.org/10.1172/JCI5624CrossRefPubMedCentralPubMedGoogle Scholar
  99. Graham MR, Evans P, Davies B, Baker JS (2008) Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease. Vasc Health Risk Manag 4:1361–1371CrossRefPubMedPubMedCentralGoogle Scholar
  100. Grinspoon S, Thomas L, Miller K et al (2002) Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab 87:2883–2891.  https://doi.org/10.1210/jcem.87.6.8574CrossRefPubMedGoogle Scholar
  101. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281CrossRefPubMedGoogle Scholar
  102. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13.  https://doi.org/10.1126/scitranslmed.3001845CrossRefPubMedCentralPubMedGoogle Scholar
  103. Gupta S, Pablo AM, X c J et al (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761.  https://doi.org/10.1172/JCI119465CrossRefPubMedCentralPubMedGoogle Scholar
  104. Hajsadeghi S, Mohseni H, Moradi M et al (2011) Evaluating the association between insulin-like growth factor-1 values and short-term survival rates following acute myocardial infarction. Clin Med Insights Cardiol 5:7–11.  https://doi.org/10.4137/CMC.S6629CrossRefPubMedCentralPubMedGoogle Scholar
  105. Hallak H, Seiler AEM, Green JS et al (2000) Association of heterotrimeric Gi with the insulin-like growth factor-I receptor: release of G subunits upon receptor activation. J Biol Chem 275:2255–2258.  https://doi.org/10.1074/jbc.275.4.2255CrossRefPubMedGoogle Scholar
  106. Han KH, Han KO, Green SR, Quehenberger O (1999) Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia. Differential effects of plasma lipoproteins on monocyte function. J Lipid Res 40:1053–1063PubMedGoogle Scholar
  107. Harats D, Shaish A, George J et al (2000) Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 20:2100–2105CrossRefPubMedGoogle Scholar
  108. Heffernan M, Summers RJ, Thorburn A et al (2001) The effects of human GH and its lipolytic fragment (AOD9604) on lipid metabolism following chronic treatment in obese mice and beta(3)-AR knock-out mice. Endocrinology 142:5182–5189CrossRefPubMedGoogle Scholar
  109. Heinecke JW (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141:1–15CrossRefPubMedGoogle Scholar
  110. Hennig M, Fiedler S, Jux C et al (2017) Prenatal mechanistic target of rapamycin complex 1 (m TORC1) inhibition by rapamycin treatment of pregnant mice causes intrauterine growth restriction and alters postnatal cardiac growth, morphology, and function. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.117.005506
  111. Herndon DN, Ramzy PI, DebRoy MA et al (1999) Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment. Ann Surg 229:713–720CrossRefPubMedPubMedCentralGoogle Scholar
  112. Hijikawa T, Kaibori M, Uchida Y et al (2008) Insulin-like growth factor 1 prevents liver injury through the inhibition of TNF-alpha and iNOS induction in D-galactosamine and LPS-treated rats. Shock 29:740–747.  https://doi.org/10.1097/shk.0b013e31815d0780CrossRefPubMedGoogle Scholar
  113. Horio T, Maki T, Kishimoto I et al (2005) Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts. Regul Pept 124:65–72.  https://doi.org/10.1016/j.regpep.2004.06.029CrossRefPubMedGoogle Scholar
  114. Hsieh PCH, Segers VFM, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974.  https://doi.org/10.1038/nm1618CrossRefPubMedCentralPubMedGoogle Scholar
  115. Hu BS, Landeen LK, Aroonsakool N, Giles WR (2007) An analysis of the effects of stretch on IGF-I secretion from rat ventricular fibroblasts. Am J Physiol Heart Circ Physiol 293:H677–H683.  https://doi.org/10.1152/ajpheart.01413.2006CrossRefPubMedGoogle Scholar
  116. Huynh K, McMullen JR, Julius TL et al (2010) Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy. Diabetes 59:1512–1520.  https://doi.org/10.2337/db09-1456CrossRefPubMedCentralPubMedGoogle Scholar
  117. Hypponen E, Boucher BJ, Berry DJ, Power C (2008) 25-Hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes 57:298–305.  https://doi.org/10.2337/db07-1122CrossRefPubMedGoogle Scholar
  118. Ibarra C, Vicencio JM, Estrada M et al (2013) Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 112:236–245.  https://doi.org/10.1161/CIRCRESAHA.112.273839CrossRefPubMedGoogle Scholar
  119. Ikeda H, Shiojima I, Ozasa Y et al (2009) Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. J Mol Cell Cardiol 47:664–675.  https://doi.org/10.1016/j.yjmcc.2009.08.028CrossRefPubMedCentralPubMedGoogle Scholar
  120. Ita JR, Castilla-Cortázar I, Aguirre GA et al (2015) Altered liver expression of genes involved in lipid and glucose metabolism in mice with partial IGF-1 deficiency: an experimental approach to metabolic syndrome. J Transl Med.  https://doi.org/10.1186/s12967-015-0684-9
  121. Janssen JAMJL, Stolk RP, Pols HAP et al (1998) Serum total IGF-I, free IGF-I, and IGFBP-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol 18:277–282.  https://doi.org/10.1161/01.ATV.18.2.277CrossRefPubMedGoogle Scholar
  122. Jeschke MG, Barrow RE, Herndon DN (2000a) Insulinlike growth factor I plus insulinlike growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children. Ann Surg 231:246–252CrossRefPubMedPubMedCentralGoogle Scholar
  123. Jeschke MG, Barrow RE, Herndon DN (2000b) Insulinlike growth factor I plus insulinlike growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children. Ann Surg 231:246–252.  https://doi.org/10.1097/00000658-200002000-00014CrossRefPubMedCentralPubMedGoogle Scholar
  124. Jeschke MG, Herndon DN, Vita R et al (2001) IGF-I/BP-3 administration preserves hepatic homeostasis after thermal injury which is associated with increases in no and hepatic NF-kappa B. Shock 16:373–379CrossRefPubMedGoogle Scholar
  125. Jia G, Cheng G, Gangahar DM, Agrawal DK (2006) Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol 84:448–454.  https://doi.org/10.1111/j.1440-1711.2006.01454.xCrossRefPubMedGoogle Scholar
  126. Jing Z, Hou X, Wang Y et al (2015) Association between insulin-like growth factor-1 and cardiovascular disease risk: evidence from a meta-analysis. Int J Cardiol 198:1–5CrossRefPubMedGoogle Scholar
  127. Johnsen SP, Hundborg HH, Sørensen HT et al (2005) Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 90:5937–5941.  https://doi.org/10.1210/jc.2004-2088CrossRefPubMedGoogle Scholar
  128. Jorn Schneider H, Klotsche J, Saller B et al (2008) Associations of age-dependent IGF-I SDS with cardiovascular diseases and risk conditions: cross-sectional study in 6773 primary care patients. Eur J Endocrinol 158:153–161.  https://doi.org/10.1530/EJE-07-0600CrossRefGoogle Scholar
  129. Juul A, Scheike T, Davidsen M et al (2002a) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 106:939–944.  https://doi.org/10.1161/01.CIR.0000027563.44593.CCCrossRefPubMedGoogle Scholar
  130. Juul A, Scheike T, Davidsen M et al (2002b) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 106:939–944CrossRefPubMedGoogle Scholar
  131. Kadri Z, Lefevre C, Goupille O et al (2015) Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis. Genes Dev 29:2603–2616.  https://doi.org/10.1101/gad.267633.115CrossRefPubMedCentralPubMedGoogle Scholar
  132. Kanekar S, Borg TK, Terracio L, Carver W (2000) Modulation of heart fibroblast migration and collagen gel contraction by IGF-I. Cell Adhes Commun 7:513–523CrossRefPubMedGoogle Scholar
  133. Kaplan RC, McGinn AP, Pollak MN et al (2007) Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 92:1319–1325.  https://doi.org/10.1210/jc.2006-1631CrossRefPubMedGoogle Scholar
  134. Kawachi S-I (2005) Circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 are associated with early carotid atherosclerosis. Arterioscler Thromb Vasc Biol 25:617–621.  https://doi.org/10.1161/01.ATV.0000154486.03017.35CrossRefPubMedGoogle Scholar
  135. Kawaguchi N, Smith AJ, Waring CD et al (2010) c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One 5:e14297.  https://doi.org/10.1371/journal.pone.0014297CrossRefPubMedCentralPubMedGoogle Scholar
  136. Kemp SF (2009) Insulin-like growth factor-I deficiency in children with growth hormone insensitivity: current and future treatment options. BioDrugs 23:155–163.  https://doi.org/10.2165/00063030-200923030-00002CrossRefPubMedGoogle Scholar
  137. Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol 22:2531–2543.  https://doi.org/10.1210/me.2008-0265CrossRefPubMedCentralPubMedGoogle Scholar
  138. Kim JJ, Accili D (2002) Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 12:84–90CrossRefPubMedGoogle Scholar
  139. Kirstein M, Aston C, Hintz R, Vlassara H (1992) Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest 90:439–446.  https://doi.org/10.1172/JCI115879CrossRefPubMedCentralPubMedGoogle Scholar
  140. Kling PJ, Taing KM, Dvorak B et al (2006) Insulin-like growth factor-I stimulates erythropoiesis when administered enterally. Growth Factors 24:218–223.  https://doi.org/10.1080/08977190600783162CrossRefPubMedGoogle Scholar
  141. Kong APS, Choi K-C, Wong GWK et al (2011a) Serum concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3 and cardiovascular risk factors in adolescents. Ann Clin Biochem 48:263–269.  https://doi.org/10.1258/acb.2011.010267CrossRefPubMedGoogle Scholar
  142. Kong APS, Choi K-C, Wong GWK et al (2011b) Serum concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3 and cardiovascular risk factors in adolescents. Ann Clin Biochem 48:263–269.  https://doi.org/10.1258/acb.2011.010267CrossRefPubMedGoogle Scholar
  143. Kooijman R, Coppens A (2004) Insulin-like growth factor-I stimulates IL-10 production in human T cells. J Leukoc Biol 76:862–867.  https://doi.org/10.1189/jlb.0404248CrossRefPubMedGoogle Scholar
  144. Kotlyar AA, Vered Z, Goldberg I et al (2001) Insulin-like growth factor I and II preserve myocardial structure in postinfarct swine. Heart 86:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  145. Kuemmerle JF, Murthy KS (2001) Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: G-dependent mitogen-activated protein kinase activation and growth. J Biol Chem 276:7187–7194.  https://doi.org/10.1074/jbc.M011145200CrossRefPubMedGoogle Scholar
  146. Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta Rev Cancer 1766:1–22CrossRefGoogle Scholar
  147. Lang CH, Nystrom GJ, Frost RA (1999) Regulation of IGF binding protein-1 in hep G2 cells by cytokines and reactive oxygen species. Am J Physiol 276:G719–G727PubMedGoogle Scholar
  148. Lara-Diaz VJ, Castilla-Cortazar I, Martín-Estal I, García-Magariño M, Aguirre GA, Puche JE, de la Garza RG, Morales LA, Muñoz U (2017) IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture. J Physiol Biochem 73(2):245–258.  https://doi.org/10.1007/s13105-016-0545-x
  149. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D (2004) The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the rancho bernardo study. J Clin Endocrinol Metab 89:114–120.  https://doi.org/10.1210/jc.2003-030967CrossRefPubMedGoogle Scholar
  150. Lavandero S, Troncoso R, Rotherme BA et al (2013) Cardiovascular autophagy concepts, controversies, and perspectives. Autophagy 9:1455–1466CrossRefPubMedGoogle Scholar
  151. Lee HK (2014) Success of 2013-2020 World Health Organization action plan to control non-communicable diseases would require pollutants control. J Diabetes Investig 5:621–622.  https://doi.org/10.1111/jdi.12247CrossRefPubMedCentralPubMedGoogle Scholar
  152. Lee WL, Chen JW, Ting CT et al (1999) Changes of the insulin-like growth factor I system during acute myocardial infarction: implications on left ventricular remodeling. J Clin Endocrinol Metab 84:1575–1581.  https://doi.org/10.1210/jcem.84.5.5676CrossRefPubMedGoogle Scholar
  153. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16:143–163CrossRefPubMedGoogle Scholar
  154. LeRoith D, Yakar S (2007) Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 3:302–310.  https://doi.org/10.1038/ncpendmet0427CrossRefPubMedGoogle Scholar
  155. Lewitt MS, Hilding A, Brismar K et al (2010) IGF-binding protein 1 and abdominal obesity in the development of type 2 diabetes in women. Eur J Endocrinol 163:233–242.  https://doi.org/10.1530/EJE-10-0301CrossRefPubMedCentralPubMedGoogle Scholar
  156. Lin H-L, Ueng K-C, Wang H-L et al (2013) The impact of IGF-I gene polymorphisms on coronary artery disease susceptibility. J Clin Lab Anal 27:162–169.  https://doi.org/10.1002/jcla.21581CrossRefPubMedGoogle Scholar
  157. Linke A, Muller P, Nurzynska D et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci 102:8966–8971.  https://doi.org/10.1073/pnas.0502678102CrossRefPubMedGoogle Scholar
  158. Liu J, Kosma V-M, Vänttinen T et al (2002) Gonadotrophins inhibit the expression of insulin-like growth factor binding protein-related protein-2 mRNA in cultured human granulosa-luteal cells. Mol Hum Reprod 8:136–141CrossRefPubMedGoogle Scholar
  159. Liu X-F, Fawcett JR, Thorne RG et al (2001) Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187:91–97CrossRefPubMedGoogle Scholar
  160. Livingstone C, Borai A (2014) Insulin-like growth factor-II: its role in metabolic and endocrine disease. Clin Endocrinol (Oxf) 80:773–781.  https://doi.org/10.1111/cen.12446CrossRefGoogle Scholar
  161. Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398.  https://doi.org/10.1016/j.stem.2011.02.002CrossRefPubMedCentralPubMedGoogle Scholar
  162. López-Bermejo A, Khosravi J, Corless CL et al (2003) Generation of anti-insulin-like growth factor-binding protein-related protein 1 (IGFBP-rP1/MAC25) monoclonal antibodies and immunoassay: quantification of IGFBP-rP1 in human serum and distribution in human fluids and tissues. J Clin Endocrinol Metab 88:3401–3408.  https://doi.org/10.1210/jc.2002-021315CrossRefPubMedGoogle Scholar
  163. Luttrell LM, van Biesen T, Hawes BE et al (1995) G subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem 270:16495–16498.  https://doi.org/10.1074/jbc.270.28.16495CrossRefPubMedGoogle Scholar
  164. Mach F, Schönbeck U, Sukhova GK et al (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–203.  https://doi.org/10.1038/28204CrossRefPubMedGoogle Scholar
  165. Maggio M, Lauretani F, Ceda GP et al (2006a) Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study. Am J Physiol Endocrinol Metab 292:E353–E358.  https://doi.org/10.1152/ajpendo.00339.2006CrossRefPubMedCentralPubMedGoogle Scholar
  166. Maggio M, Lauretani F, Ceda GP et al (2006b) Association between hormones and metabolic syndrome in older Italian men. J Am Geriatr Soc 54:1832–1838.  https://doi.org/10.1111/j.1532-5415.2006.00963.xCrossRefPubMedCentralPubMedGoogle Scholar
  167. Marsh SA, Davidoff AJ (2012) Heart smart insulin-like growth factor 1. Hypertension 59:550–551.  https://doi.org/10.1161/HYPERTENSIONAHA.111.188441CrossRefPubMedGoogle Scholar
  168. Martín-Estal I, de la Garza RG, de Cortázar IC (2015) Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol.  https://doi.org/10.1007/112_2015_5001
  169. Mauras N, Haymond MW (2005) Are the metabolic effects of GH and IGF-I separable? Growth Horm IGF Res 15:19–27.  https://doi.org/10.1016/j.ghir.2004.12.003CrossRefPubMedGoogle Scholar
  170. Mavrommatis E, Shioura KM, Los T, Goldspink PH (2013) The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction. Mol Cell Biochem 381:69–83.  https://doi.org/10.1007/s11010-013-1689-4CrossRefPubMedCentralPubMedGoogle Scholar
  171. McMahon M, Ayllón V, Panov KI, O’Connor R (2010) Ribosomal 18 S RNA processing by the IGF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. J Biol Chem 285:18309–18318.  https://doi.org/10.1074/jbc.M110.108555CrossRefPubMedCentralPubMedGoogle Scholar
  172. McMullen JR (2008) Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease. Clin Exp Pharmacol Physiol 35:349–354.  https://doi.org/10.1111/j.1440-1681.2007.04873.xCrossRefPubMedGoogle Scholar
  173. McMullen JR, Shioi T, Huang W-Y et al (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 279:4782–4793.  https://doi.org/10.1074/jbc.M310405200CrossRefPubMedGoogle Scholar
  174. Melnik BC, John S, Schmitz G (2011) Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond) 8:41.  https://doi.org/10.1186/1743-7075-8-41CrossRefGoogle Scholar
  175. Mirpuri E, García-Trevijano ER, Castilla-Cortazar I et al (2002) Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. Int J Biochem Cell Biol 34:242–252.  https://doi.org/10.1016/S1357-2725(01)00123-6CrossRefPubMedGoogle Scholar
  176. Moses AC (2005) Insulin resistance and type 2 diabetes mellitus: is there a therapeutic role for IGF-1? In: IGF-I and IGF binding proteins. KARGER, Basel, pp 121–134Google Scholar
  177. Motiwala SR, Szymonifka J, Belcher A et al (2014) Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. J Cardiovasc Transl Res 7:250–261.  https://doi.org/10.1007/s12265-013-9522-8CrossRefPubMedGoogle Scholar
  178. Muguerza B, Castilla-Cortázar I, García M et al (2001a) Antifibrogenic effect in vivo of low doses of insulin-like growth factor-I in cirrhotic rats. Biochim Biophys Acta 1536:185–195.  https://doi.org/10.1016/S0925-4439(01)00045-XCrossRefPubMedGoogle Scholar
  179. Muguerza B, Castilla-Cortázar I, García M et al (2001b) Antifibrogenic effect in vivo of low doses of insulin-like growth factor-I in cirrhotic rats. Biochim Biophys Acta 1536:185–195CrossRefPubMedGoogle Scholar
  180. Muñoz JP, Collao A, Chiong M et al (2009) The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochem Biophys Res Commun 388:155–160.  https://doi.org/10.1016/j.bbrc.2009.07.147CrossRefPubMedGoogle Scholar
  181. Narayan KMV, Ali MK, Koplan JP (2010) Global noncommunicable diseases – where worlds meet. N Engl J Med 363:1196–1198.  https://doi.org/10.1056/NEJMp1002024CrossRefPubMedGoogle Scholar
  182. Navab M, Berliner JA, Watson AD et al (1996) The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16:831–842CrossRefPubMedGoogle Scholar
  183. Nemchenko A, Chiong M, Turer A et al (2011) Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51:584–593.  https://doi.org/10.1016/j.yjmcc.2011.06.010CrossRefPubMedCentralPubMedGoogle Scholar
  184. Nikolaev VO, Moshkov A, Lyon AR et al (2010) 2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657.  https://doi.org/10.1126/science.1185988CrossRefPubMedGoogle Scholar
  185. O’Neill BT, Lauritzen HPMM, Hirshman MF et al (2015) Differential role of insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 11:1220–1235.  https://doi.org/10.1016/j.celrep.2015.04.037CrossRefPubMedCentralPubMedGoogle Scholar
  186. Ock S, Lee WS, Ahn J et al (2015) Deletion of IGF-1 receptors in cardiomyocytes attenuates cardiac aging in male mice. Endocrinology 157:en20151709.  https://doi.org/10.1210/en.2015-1709CrossRefGoogle Scholar
  187. Ohlsson C, Mohan S, Sjögren K et al (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535CrossRefPubMedPubMedCentralGoogle Scholar
  188. Opgaard OS, Wang PH (2005) IGF-I is a matter of heart. Growth Horm IGF Res 15:89–94CrossRefGoogle Scholar
  189. Padin-Iruegas ME, Misao Y, Davis ME et al (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120:876–887.  https://doi.org/10.1161/CIRCULATIONAHA.109.852285CrossRefPubMedCentralPubMedGoogle Scholar
  190. Pajunen P, Rissanen H, Härkänen T et al (2010) The metabolic syndrome as a predictor of incident diabetes and cardiovascular events in the Health 2000 Study. Diabetes Metab 36:395–401.  https://doi.org/10.1016/j.diabet.2010.04.003CrossRefPubMedGoogle Scholar
  191. Palmiero P, Zito A, Maiello M et al (2015) Left ventricular diastolic function in hypertension: methodological considerations and clinical implications. J Clin Med Res 7(3):137–144CrossRefPubMedGoogle Scholar
  192. Pascual M, Castilla-Cortazar I, Urdaneta E et al (2000) Altered intestinal transport of amino acids in cirrhotic rats: the effect of insulin-like growth factor-I. Am J Physiol Gastrointest Liver Physiol 279:G319–G324CrossRefPubMedGoogle Scholar
  193. Pekic S, Popovic V (2013) GH therapy and cancer risk in hypopituitarism: what we know from human studies. Eur J Endocrinol 169(5):R89–R97CrossRefPubMedGoogle Scholar
  194. Pérez R, García-Fernández M, Díaz-Sánchez M et al (2008) Mitochondrial protection by low doses of insulin-like growth factor-I in experimental cirrhosis. World J Gastroenterol 14:2731–2739.  https://doi.org/10.3748/wjg.14.2731CrossRefPubMedCentralPubMedGoogle Scholar
  195. Perkel D, Naghi J, Agarwal M et al (2012) The potential effects of IGF-1 and GH on patients with chronic heart failure. J Cardiovasc Pharmacol Ther 17:72–78.  https://doi.org/10.1177/1074248411402078CrossRefPubMedGoogle Scholar
  196. Pi Y, Goldenthal MJ, Marín-García J (2007) Mitochondrial involvement in IGF-1 induced protection of cardiomyocytes against hypoxia/reoxygenation injury. Mol Cell Biochem 301:181–189.  https://doi.org/10.1007/s11010-007-9410-0CrossRefPubMedGoogle Scholar
  197. Pierre-Eugene C, Pagesy P, Nguyen TT et al (2012) Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 7:e41992.  https://doi.org/10.1371/journal.pone.0041992CrossRefPubMedCentralPubMedGoogle Scholar
  198. Puche JE, Castilla-Cortázar I (2012a) Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 10:224CrossRefPubMedPubMedCentralGoogle Scholar
  199. Puche JE, Castilla-Cortázar I (2012b) Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 10:224.  https://doi.org/10.1186/1479-5876-10-224CrossRefPubMedCentralPubMedGoogle Scholar
  200. Puche JE, García-Fernández M, Muntané J et al (2008a) Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 149:2620–2627.  https://doi.org/10.1210/en.2007-1563CrossRefPubMedGoogle Scholar
  201. Puche JE, García-Fernández M, Muntané J et al (2008b) Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 149:2620–2627.  https://doi.org/10.1210/en.2007-1563CrossRefPubMedGoogle Scholar
  202. Puche JE, Muñoz Ú, García-Magariño M et al (2015) Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy. Biofactors 42:60–79.  https://doi.org/10.1002/biof.1255CrossRefGoogle Scholar
  203. Quattrin T, Thrailkill K, Baker L et al (1997) Dual hormonal replacement with insulin and recombinant human insulin-like growth factor I in IDDM. Effects on glycemic control, IGF-I levels, and safety profile. Diabetes Care 20:374–380CrossRefPubMedGoogle Scholar
  204. Rajpathak SN, Gunter MJ, Wylie-Rosett J et al (2009) The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab Res Rev 25:3–12CrossRefPubMedPubMedCentralGoogle Scholar
  205. Ranke MB, Savage MO, Chatelain PG et al (1999) Long-term treatment of growth hormone insensitivity syndrome with IGF-I. Results of the European Multicentre Study. The Working Group on Growth Hormone Insensitivity Syndromes. Horm Res 51:128–134PubMedGoogle Scholar
  206. Ren J, Anversa P (2015) The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2014.12.006
  207. Ricketts SL, Rensing KL, Holly JM et al (2011) Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease. Int J Mol Epidemiol Genet 2:261–285PubMedCentralPubMedGoogle Scholar
  208. Riehle C, Wende AR, Sena S et al (2013) Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 123:5319–5333.  https://doi.org/10.1172/JCI71171CrossRefPubMedCentralPubMedGoogle Scholar
  209. Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253:2769–2776PubMedGoogle Scholar
  210. Rom WN, Basset P, Fells GA et al (1988) Alveolar macrophages release an insulin-like growth factor I-type molecule. J Clin Invest 82:1685–1693.  https://doi.org/10.1172/JCI113781CrossRefPubMedCentralPubMedGoogle Scholar
  211. Rosenbloom AL (2015) A half-century of studies of growth hormone insensitivity/Laron syndrome: a historical perspective. Growth Horm IGF Res. August 2015Google Scholar
  212. Rosenbloom AL (2009) Mecasermin (recombinant human insulin-like growth factor I). Adv Ther 26:40–54.  https://doi.org/10.1007/s12325-008-0136-5CrossRefPubMedGoogle Scholar
  213. Rosenfeld RG, Hwa V, Wilson E et al (2000) The insulin-like growth factor-binding protein superfamily. Growth Horm IGF Res 10(Suppl A):S16–S17CrossRefPubMedGoogle Scholar
  214. Rosenthal N, Musarò A (2002) Gene therapy for cardiac cachexia? Int J Cardiol 85:185–191CrossRefPubMedGoogle Scholar
  215. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126.  https://doi.org/10.1056/NEJM199901143400207CrossRefPubMedGoogle Scholar
  216. Rota M, Padin-Iruegas ME, Misao Y et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103:107–116.  https://doi.org/10.1161/CIRCRESAHA.108.178525CrossRefPubMedCentralPubMedGoogle Scholar
  217. Sádaba MC, Martín-Estal I, Puche JE, Castilla-Cortázar I (2016) Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim Biophys Acta 1862:1267–1278.  https://doi.org/10.1016/j.bbadis.2016.03.010CrossRefPubMedGoogle Scholar
  218. Samstein B, Hoimes ML, Fan J et al (1996) IL-6 stimulation of insulin-like growth factor binding protein (IGFBP)-1 production. Biochem Biophys Res Commun 228:611–615.  https://doi.org/10.1006/bbrc.1996.1705CrossRefPubMedGoogle Scholar
  219. Santini MP, Winn N, Rosenthal N (2006) Signalling pathways in cardiac regeneration Novartis Found Symp 274:228–238 discussion 239–243, 272–226Google Scholar
  220. Saydah S, Ballard-Barbash R, Potischman N (2009) Association of metabolic syndrome with insulin-like growth factors among adults in the US. Cancer Causes Control 20:1309–1316.  https://doi.org/10.1007/s10552-009-9351-xCrossRefPubMedGoogle Scholar
  221. Schäbitz WR, Hoffmann TT, Heiland S et al (2001) Delayed neuroprotective effect of insulin-like growth factor-I after experimental transient focal cerebral ischemia monitored with mri. Stroke 32:1226–1233.  https://doi.org/10.1161/01.STR.32.5.1226CrossRefPubMedGoogle Scholar
  222. Scharin Täng M, Redfors B, Lindbom M et al (2012) Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling. Growth Horm IGF Res 22:206–211.  https://doi.org/10.1016/j.ghir.2012.09.002CrossRefPubMedGoogle Scholar
  223. Scheinowitz M, Feinberg MS, Laron Z (2009) IGF-I replacement therapy in children with congenital IGF-I deficiency (Laron syndrome) maintains heart dimension and function. Growth Horm IGF Res 19:280–282.  https://doi.org/10.1016/j.ghir.2008.11.004CrossRefPubMedGoogle Scholar
  224. Schutte AE, Schutte R, Smith W et al (2014) Compromised bioavailable IGF-1 of black men relates favourably to ambulatory blood pressure: the SABPA study. Atherosclerosis 233:139–144.  https://doi.org/10.1016/j.atherosclerosis.2013.12.025CrossRefPubMedGoogle Scholar
  225. Schwab S, Spranger M, Krempien S et al (1997) Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 28:1744–1748CrossRefPubMedGoogle Scholar
  226. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 9(6):895–907Google Scholar
  227. Segers VFM, Lee RT (2010) Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Transl Res 3:469–477.  https://doi.org/10.1007/s12265-010-9207-5CrossRefPubMedCentralPubMedGoogle Scholar
  228. Senyo SE, Steinhauser ML, Pizzimenti CL et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436.  https://doi.org/10.1038/nature11682CrossRefPubMedGoogle Scholar
  229. Sesso R, Franco MCP (2010) Abnormalities in metalloproteinase pathways and IGF-I axis: a link between birth weight, hypertension, and vascular damage in childhood. Am J Hypertens 23:6–11.  https://doi.org/10.1038/ajh.2009.200CrossRefPubMedGoogle Scholar
  230. Shaikh S, Troncoso R, Criollo A et al (2016) Regulation of cardiomyocyte autophagy by calcium. Am J Physiol Endocrinol Metab 310:E587–E596.  https://doi.org/10.1152/ajpendo.00374.2015CrossRefPubMedCentralPubMedGoogle Scholar
  231. Shavlakadze T, Winn N, Rosenthal N, Grounds MD (2005) Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res 15:4–18.  https://doi.org/10.1016/j.ghir.2004.11.001CrossRefPubMedGoogle Scholar
  232. Simpson HL, Jackson NC, Shojaee-Moradie F et al (2004) Insulin-like growth factor I has a direct effect on glucose and protein metabolism, but no effect on lipid metabolism in type 1 diabetes. J Clin Endocrinol Metab 89:425–432.  https://doi.org/10.1210/jc.2003-031274CrossRefPubMedGoogle Scholar
  233. Sirbu A, Nicolae H, Martin S et al (2015) IGF-1 and insulin resistance are major determinants of common carotid artery thickness in morbidly obese young patients. Angiology.  https://doi.org/10.1177/0003319715586499
  234. Smith TJ (2010) Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 62:199–236.  https://doi.org/10.1124/pr.109.002469CrossRefPubMedCentralPubMedGoogle Scholar
  235. Song Y-H, Godard M, Li Y et al (2005) Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 53:135–142.  https://doi.org/10.2310/6650.2005.00309CrossRefPubMedCentralPubMedGoogle Scholar
  236. Spallarossa P, Brunelli C, Minuto F et al (1996) Insulin-like growth factor-I and angiographically documented coronary artery disease. Am J Cardiol 77:200–202CrossRefPubMedGoogle Scholar
  237. Spies M, Wolf SE, Barrow RE et al (2002) Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children. Crit Care Med 30:83–88CrossRefPubMedGoogle Scholar
  238. Stavropoulou A, Halapas A (2009) IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 15:1.  https://doi.org/10.2119/molmed.2009.00012CrossRefGoogle Scholar
  239. Steinberg D, Witztum JL (1999) Lipoproteins, lipoprotein, oxidation, and atherogenesis. W.B. Saunders Co., Philadelphia, PAGoogle Scholar
  240. Sultana N, Zhang L, Yan J et al (2015) Resident c-kit+ cells in the heart are not cardiac stem cells. Nat Commun 6:8701.  https://doi.org/10.1038/ncomms9701CrossRefPubMedCentralPubMedGoogle Scholar
  241. Tadevosyan A, Vaniotis G, Allen BG et al (2012) G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. J Physiol 590:1313–1330.  https://doi.org/10.1113/jphysiol.2011.222794CrossRefPubMedGoogle Scholar
  242. Talamantes F, Ortiz R (2002) Structure and regulation of expression of the mouse GH receptor. J Endocrinol 175:55–59CrossRefPubMedGoogle Scholar
  243. Tang J-H, Ma L-L, T-X Y et al (2014) Insulin-like growth factor-1 as a prognostic marker in patients with acute ischemic stroke. PLoS One 9:e99186.  https://doi.org/10.1371/journal.pone.0099186CrossRefPubMedCentralPubMedGoogle Scholar
  244. Täng MS, Redfors B, Lindbom M et al (2012) Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling. Growth Horm IGF Res 22:206–211.  https://doi.org/10.1016/j.ghir.2012.09.002CrossRefGoogle Scholar
  245. Temmerman L, Slonimsky E, Rosenthal N (2010) Class 2 IGF-1 isoforms are dispensable for viability, growth and maintenance of IGF-1 serum levels. Growth Horm IGF Res 20:255–263.  https://doi.org/10.1016/j.ghir.2010.03.002CrossRefPubMedGoogle Scholar
  246. Tong PCY, Ho C-S, Yeung VTF et al (2005) Association of testosterone, insulin-like growth factor-I, and C-reactive protein with metabolic syndrome in Chinese middle-aged men with a family history of type 2 diabetes. J Clin Endocrinol Metab 90:6418–6423.  https://doi.org/10.1210/jc.2005-0228CrossRefPubMedGoogle Scholar
  247. Touvron M, Escoubet B, Mericskay M et al (2012) Locally expressed IGF1 propeptide improves mouse heart function in induced dilated cardiomyopathy by blocking myocardial fibrosis and SRF-dependent CTGF induction. Dis Model Mech 5:481–491.  https://doi.org/10.1242/dmm.009456CrossRefPubMedCentralPubMedGoogle Scholar
  248. Troncoso R, Díaz-Elizondo J, Espinoza SP et al (2013) Regulation of cardiac autophagy by insulin-like growth factor 1. IUBMB Life 65:593–601.  https://doi.org/10.1002/iub.1172CrossRefPubMedGoogle Scholar
  249. Troncoso R, Ibarra C, Vicencio JM et al (2014a) New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 25:128–137.  https://doi.org/10.1016/j.tem.2013.12.002CrossRefPubMedGoogle Scholar
  250. Troncoso R, Ibarra C, Vicencio JM et al (2014b) New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 25:128–137.  https://doi.org/10.1016/j.tem.2013.12.002CrossRefPubMedGoogle Scholar
  251. Troncoso R, Vicencio JM, Parra V et al (2012) Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res 93:320–329.  https://doi.org/10.1093/cvr/cvr321CrossRefPubMedGoogle Scholar
  252. Ungvari Z, Csiszar A (2012a) The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 67:599–610.  https://doi.org/10.1093/gerona/gls072CrossRefPubMedGoogle Scholar
  253. Ungvari Z, Csiszar A (2012b) The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 67(A):599–610CrossRefPubMedGoogle Scholar
  254. Urbanek K (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673.  https://doi.org/10.1161/01.RES.0000183733.53101.11CrossRefPubMedGoogle Scholar
  255. van Berlo JH, Kanisicak O, Maillet M et al (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341.  https://doi.org/10.1038/nature13309CrossRefPubMedCentralPubMedGoogle Scholar
  256. van Bunderen CC, Oosterwerff MM, van Schoor NM et al (2013) Serum IGF1, metabolic syndrome, and incident cardiovascular disease in older people: a population-based study. Eur J Endocrinol 168:393–401.  https://doi.org/10.1530/EJE-12-0784CrossRefPubMedGoogle Scholar
  257. van Bunderen CC, van Nieuwpoort IC, van Schoor NM et al (2010) The association of serum insulin-like growth factor-I with mortality, cardiovascular disease, and cancer in the elderly: a population-based study. J Clin Endocrinol Metab 95:4616–4624.  https://doi.org/10.1210/jc.2010-0940CrossRefPubMedGoogle Scholar
  258. Vasan RS, Sullivan LM, D’Agostino RB et al (2003a) Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 139:642–648.  https://doi.org/10.7326/0003-4819-139-8-200310210-00007CrossRefPubMedGoogle Scholar
  259. Vasan RS, Sullivan LM, D’Agostino RB et al (2003b) Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 139:642–648.  https://doi.org/10.7326/0003-4819-139-8-200310210-00007CrossRefPubMedGoogle Scholar
  260. Vinciguerra M, Santini MP, Claycomb WC et al (2009) Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2:43–62.  https://doi.org/10.18632/aging.100107CrossRefGoogle Scholar
  261. Vivar R, Humeres C, Varela M et al (2012) Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK-ERK pathways. Exp Mol Pathol 93:1–7.  https://doi.org/10.1016/j.yexmp.2012.01.010CrossRefPubMedGoogle Scholar
  262. Von Lewinski D, Voß K, Hülsmann S et al (2003) Insulin-like growth factor-1 exerts Ca2+-dependent positive inotropic effects in failing human myocardium. Circ Res 92:169–176.  https://doi.org/10.1161/01.RES.0000051885.70159.12CrossRefGoogle Scholar
  263. Wang KCW, Tosh DN, Zhang S et al (2015a) IGF-2R-Gαq signaling and cardiac hypertrophy in the low-birth-weight lamb. Am J Physiol Regul Integr Comp Physiol 308:R627–R635.  https://doi.org/10.1152/ajpregu.00346.2014CrossRefPubMedCentralPubMedGoogle Scholar
  264. Wang L, Niu X, Hu J et al (2015b) After myocardial ischemia-reperfusion, miR-29a, and Let7 could affect apoptosis through regulating IGF-1. Biomed Res Int 2015:245412.  https://doi.org/10.1155/2015/245412CrossRefPubMedCentralPubMedGoogle Scholar
  265. Watanabe S, Tamura T, Ono K et al (2010) Insulin-like growth factor axis (insulin-like growth factor-I/insulin-like growth factor-binding protein-3) as a prognostic predictor of heart failure: association with adiponectin. Eur J Heart Fail 12:1214–1222.  https://doi.org/10.1093/eurjhf/hfq166CrossRefPubMedGoogle Scholar
  266. Wetterau LA, Francis MJ, Ma L, Cohen P (2003) Insulin-like growth factor I stimulates telomerase activity in prostate cancer cells. J Clin Endocrinol Metab 88:3354–3359.  https://doi.org/10.1210/jc.2002-021326CrossRefPubMedGoogle Scholar
  267. Williams KJ, Tabas I (1998) The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9:471–474CrossRefPubMedGoogle Scholar
  268. Witztum J (1994) The oxidation hypothesis of atherosclerosis. Lancet 344:793–795.  https://doi.org/10.1016/S0140-6736(94)92346-9CrossRefPubMedGoogle Scholar
  269. Wolf E, Hoeflich A, Lahm H (1998) What is the function of IGF-II in postnatal life? Answers from transgenic mouse models. Growth Horm IGF Res 8:185–193.  https://doi.org/10.1016/S1096-6374(98)80110-XCrossRefPubMedGoogle Scholar
  270. Yeap BB, Chubb SAP, Ho KKY et al (2010) IGF1 and its binding proteins 3 and 1 are differentially associated with metabolic syndrome in older men. Eur J Endocrinol 162:249–257.  https://doi.org/10.1530/EJE-09-0852CrossRefPubMedGoogle Scholar
  271. Yu X-Y, Geng Y-J, Li X-H et al (2009) The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor. Mol Cell Biochem 332:25–32.  https://doi.org/10.1007/s11010-009-0170-xCrossRefPubMedGoogle Scholar
  272. Zhang Y, Yuan M, Bradley KM et al (2012) Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 59:680–693.  https://doi.org/10.1161/HYPERTENSIONAHA.111.181867CrossRefPubMedCentralPubMedGoogle Scholar
  273. Zick Y (2004) Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance. Biochem Soc Trans 32:812–816.  https://doi.org/10.1042/BST0320812CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gabriel A. Aguirre
    • 1
  • José Luis González-Guerra
    • 1
  • Luis Espinosa
    • 1
  • Inma Castilla-Cortazar
    • 1
    • 2
    Email author
  1. 1.Escuela de Medicina, Tecnologico de MonterreyMonterreyMexico
  2. 2.Fundación de Investigación HM HospitalesMadridSpain

Personalised recommendations