Skip to main content

Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171

Abstract

Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DS, Levin M (2013) Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352:95–122

    Article  CAS  PubMed  Google Scholar 

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, Birch-Machin MA, von Zglinicki T, Saretzki G (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Alwaal A, Zaid UB, Lin C-S, Lue TF (2015) Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 82:137–144

    Article  PubMed  CAS  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov A (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    CAS  PubMed  Google Scholar 

  • Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, Von Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529

    Article  CAS  PubMed  Google Scholar 

  • Asashima M, Shimada K, Pfeiffer CJ (1991) Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics 12:215–224

    Article  CAS  PubMed  Google Scholar 

  • Baek S, Quan X, Kim S, Lengner C, Park J-K, Kim J (2014) Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 8:10125–10138

    Article  CAS  PubMed  Google Scholar 

  • Bagheri S, Nosrati M, Li S, Fong S, Torabian S, Rangel J, Moore DH, Federman S, LaPosa RR, Baehner FL (2006) Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci 103:11306–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauréus Koch C, Sommarin M, Persson B, Salford L, Eberhardt J (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402

    Article  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhard O, Palsson SNB (2004) Tissue engineering. Pearson Prentice Hall

    Google Scholar 

  • Blank M, Goodman R (2009) Electromagnetic fields stress living cells. Pathophysiology 16:71–78

    Article  PubMed  Google Scholar 

  • Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111:492–503

    Article  CAS  PubMed  Google Scholar 

  • Bowne‐Anderson H, Zanic M, Kauer M, Howard J (2013) Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 35:452–461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown MJ, Loew LM (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127:117–128

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  • Calabrò E, Condello S, Currò M, Ferlazzo N, Vecchio M, Caccamo D, Magazù S, Ientile R (2013) 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid Med Cell Longev 2013:414393

    Google Scholar 

  • Celso CL, Wu JW, Lin CP (2009) In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2:619–631

    Article  PubMed  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia A mechanism of o2 sensing. J Biol Chem 275:25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Upham BL, Sun W, Chang C-C, Rothwell EJ, Chen K-M, Yamasaki H, Trosko JE (2000) Effect of electromagnetic field exposure on chemically induced differentiation of friend erythroleukemia cells. Environ Health Perspect 108:967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho MR, Thatte HS, Silvia MT, Golan DE (1999) Transmembrane calcium influx induced by ac electric fields. FASEB J 13:677–683

    CAS  PubMed  Google Scholar 

  • Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Hao H, Luo M, Huang Y, Chen Z, Lu T, Zhao X, Verfaillie CM, Zweier JL, Liu Z (2011) Ox‐LDL modifies the behaviour of bone marrow stem cells and impairs their endothelial differentiation via inhibition of Akt phosphorylation. J Cell Mol Med 15:423–432

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4:S60–S67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012, 683897

    Article  PubMed  PubMed Central  Google Scholar 

  • Denegre JM, Valles JM, Lin K, Jordan W, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci 95:14729–14732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ (2015) Human induced pluripotent stem cell-derived cardiomyocytes as a model for heart development and congenital heart disease. Stem Cell Rev Rep 11:710–727

    Article  CAS  Google Scholar 

  • Dzierzak E, Enver T (2008) Stem cell researchers find their niche. Development 135:1569–1573

    Article  CAS  PubMed  Google Scholar 

  • Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22

    Article  CAS  PubMed  Google Scholar 

  • Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102:4783–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facucho-Oliveira J, John JS (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140–158

    Article  CAS  Google Scholar 

  • Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, Cimini A, Di Ilio C, Amicarelli F (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39:2093–2106

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Qiu L, Ye C, Chen L, Fu Y, Sun W (2016) Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway. Int J Radiat Biol 92:148–155

    Google Scholar 

  • Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC (2010) Hypoxia inducible-factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci 104:6223–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furse C, Christensen DA, Durney CH (2009) Basic introduction to bioelectromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F, Forte E, Ionta V, Giuliani L, D'Emilia E, Frati G (2009) Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res 82:411–420

    Article  CAS  PubMed  Google Scholar 

  • Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840:2506–2519

    Google Scholar 

  • Gerardi G, De Ninno A, Prosdocimi M, Ferrari V, Barbaro F, Mazzariol S, Bernardini D, Talpo G (2008) Effects of electromagnetic fields of low frequency and low intensity on rat metabolism. Biomagn Res Technol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Gherardini L, Ciuti G, Tognarelli S, Cinti C (2014) Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 15:5366–5387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillo B, Ma Y-S, Marks A (1993) Calcium influx in induced differentiation of murine erythroleukemia cells. Blood 81:783–792

    CAS  PubMed  Google Scholar 

  • Goldstein LS, Reyna S, Woodruff G (2015) Probing the secrets of Alzheimer’s disease using human-induced pluripotent stem cell technology. Neurotherapeutics 12:121–125

    Article  CAS  PubMed  Google Scholar 

  • Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB (2004) Effects of 50Hz electromagnetic fields on voltage-gated Ca < sup > 2 + </sup > channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315

    Article  CAS  PubMed  Google Scholar 

  • Graziewicz MA, Day BJ, Copeland WC (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 30:2817–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Einhorn L, Kelley M, Hirota K, Yodoi J, Reinbold R, Scholer H, Ramsey H, Hromas R (2004) Redox regulation of the embryonic stem cell transcription factor oct‐4 by thioredoxin. Stem Cells 22:259–264

    Article  PubMed  Google Scholar 

  • Guo Y-L, Chakraborty S, Rajan SS, Wang R, Huang F (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halgamuge MN, Perssont BR, Salford LG, Mendis P, Eberhardt J (2009) Comparison between two models for interactions between electric and magnetic fields and proteins in cell membranes. Environ Eng Sci 26:1473–1480

    Article  CAS  Google Scholar 

  • Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21:894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Won E-J, Lee B-Y, Hwang U-K, Kim I-C, Yim JH, Leung KMY, Lee YS, Lee J-S (2014) Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus. Aquat Toxicol 152:264–272

    Article  CAS  PubMed  Google Scholar 

  • Harris VK, Sadiq SA (2015) Stem cell therapy in multiple sclerosis: a future perspective. Neurodegener Dis Manag 5:167–170

    Article  PubMed  Google Scholar 

  • Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J (2011) High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol 286:31–40

    Article  CAS  PubMed  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25:254–264

    Google Scholar 

  • Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H, Miyamoto K, Shima H, Ito K, Suda T (2007) Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 363:578–583

    Article  CAS  PubMed  Google Scholar 

  • Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Cho S, Spangrude G (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ 14:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Yamashita YM (2012) Asymmetric stem cell division: precision for robustness. Cell Stem Cell 11:461–469

    Article  CAS  PubMed  Google Scholar 

  • James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS (2015) NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 6

    Google Scholar 

  • Jelenković A, Janać B, Pešić V, Jovanović D, Vasiljević I, Prolić Z (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68:355–360

    Article  PubMed  CAS  Google Scholar 

  • Jelınek F, Pokorný J, Šaroch J, Trkal V, Hašek J, Palán B (1999) Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Bioelectrochem Bioenerg 48:261–266

    Google Scholar 

  • Ji A-R, Ku S-Y, Cho MS, Kim YY, Kim YJ, Oh SK, Kim SH, Moon SY, Choi YM (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F-Y, Tang L-L, Zeng C, Liu H, Liang K-D, Mi Y, Sun C-X (2008) Effects of electric pulses on apoptosis induction and mitochondrial transmembrane potential of cancer cells. In: 7th Asian-Pacific conference on medical and biological engineering. Springer, pp 511–513

    Google Scholar 

  • Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Shakya A, Tantin D (2009a) Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci 34:491–499

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, Tantin D (2009b) A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev 23:208–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang KS, Hong JM, Kang JA, Rhie J-W, Jeong YH, Cho D-W (2013) Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med 45, e6

    Article  PubMed Central  CAS  Google Scholar 

  • Katsir G, Parola AH (1998) Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun 252:753–756

    Article  CAS  PubMed  Google Scholar 

  • Kemp K, Redondo J, Mallam E, Scolding N, Wilkins A (2015) The use of mesenchymal stem cells for treating neurodegenerative diseases. In: Stem cells and cancer stem cells, vol 13. Springer, pp 3–20

    Google Scholar 

  • Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2:11–20

    Article  CAS  PubMed  Google Scholar 

  • Knoblich JA (2008) Mechanisms of asymmetric stem Cell Division. Cell 132:583–597

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi-Miura M, Nakamura H, Yodoi J, Shiota K (2002) Thioredoxin, an anti-oxidant protein, protects mouse embryos from oxidative stress-induced developmental anomalies. Free Radic Res 36:949–956

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J, Beach D (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299

    Article  CAS  PubMed  Google Scholar 

  • Kristián T, Gertsch J, Bates TE, Siesjö BK (2000) Characteristics of the calcium‐triggered mitochondrial permeability transition in nonsynaptic brain mitochondria. J Neurochem 74:1999–2009

    Article  PubMed  Google Scholar 

  • Larsimont JC, Blanpain C (2015) Single stem cell gene therapy for genetic skin disease. EMBO Mol Med 7:366–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B-C, Johng H-M, Lim J-K, Jeong JH, Baik KY, Nam TJ, Lee JH, Kim J, Sohn UD, Yoon G (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73:43–48

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Hande MP, Sabapathy K (2005) Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation-and stress-induced p53-dependent apoptosis. J Cell Sci 118:819–829

    Article  CAS  PubMed  Google Scholar 

  • Leszczynski D, Joenväärä S, Reivinen J, Kuokka R (2002) Non‐thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer‐and blood‐brain barrier‐related effects. Differentiation 70:120–129

    Article  CAS  PubMed  Google Scholar 

  • Levin M (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24:295–315

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jiang J (2011) Stem cell niches and endogenous electric fields in tissue repair. Front Med 5:40–44

    Article  PubMed  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    Article  CAS  PubMed  Google Scholar 

  • Li S, Crothers J, Haqq CM, Blackburn EH (2005) Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J Biol Chem 280:23709–23717

    Article  CAS  PubMed  Google Scholar 

  • Li H-J, Guo L-M, Yang L-L, Zhou Y-C, Zhang Y-J, Guo J, Xie X-J, Guo G-Z (2013) Electromagnetic-pulse-induced activation of p38 MAPK pathway and disruption of blood-retinal barrier. Toxicol Lett 220:35–43

    Google Scholar 

  • Lim K-T, Kim J-H, Seonwoo H, Son H-M, Baik S-J, Park J-Y, Jeon S-H, Kim E-S, Choung Y-H, Cho C-S (2009) In vitro effects of electromagnetic field stimulation on cells in tissue engineering. Tissue Eng Regener Med 6:675–684

    Google Scholar 

  • Lin CC, Lin RW, Chang CW, Wang GJ, Lai KA (2015) Single‐pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics 36:494–505

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z (2013) Exposure to 1800MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 218:2–9

    Article  CAS  PubMed  Google Scholar 

  • Lonergan T, Brenner C, Bavister B (2006) Differentiation‐related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol 208:149–153

    Article  CAS  PubMed  Google Scholar 

  • Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro R, Mesquita KA, Oliveira PJ, Vega-Naredo I (2013) Mitochondria in cancer stem cells: a target for therapy. Recent Pat Endocr Metab Immune Drug Dis 7:102–114

    Google Scholar 

  • Lu T, Parthasarathy S, Hao H, Luo M, Ahmed S, Zhu J, Luo S, Kuppusamy P, Sen CK, Verfaillie CM (2010) Reactive oxygen species mediate oxidized low-density lipoprotein-induced inhibition of oct-4 expression and endothelial differentiation of bone marrow stem cells. Antioxid Redox Signal 13:1845–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z (2014) Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. PLoS One 9, e90041

    Article  PubMed  PubMed Central  Google Scholar 

  • Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Cavallini C, Fontani V, Ventura C (2013) Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant 22:1227–1235

    Article  PubMed  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press

    Google Scholar 

  • Masri FA, Comhair SA, Dostanic‐Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC (2008) Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 1:99–106

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews RE (2007) Harold burr's biofields measuring the electromagnetics of life. Subtle Energies Energy Med J Arch 18

    Google Scholar 

  • Mayer‐Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, Jansson V, Müller PE (2011) Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32:283–290

    Article  PubMed  CAS  Google Scholar 

  • Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP (2015) Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 51:158–165

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  • Moon J-H, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Whang KY, Kang Y-K, Yeo S (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon SH, Jenkins CM, Kiebish MA, Sims HF, Mancuso DJ, Gross RW (2012) Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release. J Biol Chem 287:29837–29850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA (2010) Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med 48:579–589

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2007) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Bhatnagar A, Sadoshima J (2012) Overview of pyridine nucleotides review series. Circ Res 111:604–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napotnik TB, Wu YH, Gundersen MA, Miklavčič D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264

    Article  CAS  Google Scholar 

  • Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols J (2001) Introducing embryonic stem cells. Curr Biol 11:R503–R505

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  CAS  PubMed  Google Scholar 

  • Nicotera P, Thor H, Orrenius S (1989) Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia. FASEB J 3:59–64

    CAS  PubMed  Google Scholar 

  • Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  • Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E (2005) Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 36:350–355

    Article  CAS  PubMed  Google Scholar 

  • Onuma EK, Hui S-W (1988) Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 106:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Panagopoulos DJ (2014) Electromagnetic interaction between environmental fields and living systems determines health and well-being. Int J Condens Matter Adv Mater Superconductivity Res 13:99

    Google Scholar 

  • Panagopoulos DJ, Karabarbounis A, Margaritis LH (2002) Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298:95–102

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulou T, Scadden DT (2008) Stem-cell ecology and stem cells in motion. Blood 111:3923–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-E, Seo Y-K, Yoon H-H, Kim C-W, Park J-K, Jeon S (2013) Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int 62:418–424

    Google Scholar 

  • Parker GC, Acsadi G, Brenner CA (2009) Mitochondria: determinants of stem cell fate? Stem Cells Dev 18:803–806

    Article  CAS  PubMed  Google Scholar 

  • Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce M, Schöler HR (2000) Oct‐4: Control of totipotency and germline determination. Mol Reprod Dev 55:452–457

    Article  CAS  PubMed  Google Scholar 

  • Pesce M, Schöler HR (2001) Oct-4:gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  CAS  PubMed  Google Scholar 

  • Pienta KJ, Hoover CN (1994) Coupling of cell structure to cell metabolism and function. J Cell Biochem 55:16–21

    Article  CAS  PubMed  Google Scholar 

  • Pokorný J (2004) Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63:321–326

    Article  PubMed  CAS  Google Scholar 

  • Pokorný J (2012) Physical aspects of biological activity and cancer. AIP Adv 2:011207

    Article  CAS  Google Scholar 

  • Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R (1997) Vibrations in microtubules. J Biol Phys 23:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokorný J, Hašek J, Jelínek F, Šaroch J, Palán B (2001) Electromagnetic activity of yeast cells in the M phase. Electro- Magnetobiol 20:371–396

    Article  Google Scholar 

  • Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203

    Article  CAS  PubMed  Google Scholar 

  • Rahnama M, Tuszynski JA, Bokkon I, Cifra M, Sardar P, Salari V (2011) Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 10:65–88

    Article  PubMed  Google Scholar 

  • Ramalho R, Soares H, Melo L (2007) Microtubule behavior under strong electromagnetic fields. Mater Sci Eng C 27:1207–1210

    Article  CAS  Google Scholar 

  • Ramalho‐Santos M (2004) Stem cells as probabilistic self‐producing entities. Bioessays 26:1013–1016

    Article  PubMed  Google Scholar 

  • Rattis FM, Voermans C, Reya T (2004) Wnt signaling in the stem cell niche. Curr Opin Hematol 11:88–94

    Article  CAS  PubMed  Google Scholar 

  • Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med 88:981–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    Article  CAS  PubMed  Google Scholar 

  • Rodda DJ, Chew J-L, Lim L-H, Loh Y-H, Wang B, Ng H-H, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  CAS  PubMed  Google Scholar 

  • Rollwitz J, Lupke M, Simkó M (2004) Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim Biophys Acta 1674:231–238

    Google Scholar 

  • Roman A, Tombarkiewicz B (2009) Prolonged weakening of the geomagnetic field (GMF) affects the immune system of rats. Bioelectromagnetics 30:21–28

    Article  CAS  PubMed  Google Scholar 

  • Rump A, Scholz T, Thiel C, Hartmann FK, Uta P, Hinrichs MH, Taft MH, Tsiavaliaris G (2011) Myosin-1C associates with microtubules and stabilizes the mitotic spindle during cell division. J Cell Sci 124:2521–2528

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Rosenfeld MG (1997) POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225

    Article  CAS  PubMed  Google Scholar 

  • Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M (2008) The Warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Res 68:5198–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samudio I, Fiegl M, Andreeff M (2009) Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 69:2163–2166

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G (2005) Telomerase and oxidative stress in embryonic stem cells. Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis. Lippincott & Williams, Philadelphia

    Google Scholar 

  • Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G (2009) Telomerase, mitochondria and oxidative stress. Exp Gerontol 44:485–492

    Article  CAS  PubMed  Google Scholar 

  • Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7:1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Sauer H, Rahimi G, Hescheler J, Wartenberg M (1999) Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 75:710–723

    Article  CAS  PubMed  Google Scholar 

  • Scarpa A, Graziotti P (1973) Mechanisms for intracellular calcium regulation in heart I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Physiol 62:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182–1184

    Article  CAS  PubMed  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  • Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya A, Cooksey R, Cox JE, Wang V, McClain DA, Tantin D (2009) Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol 11:320–327

    Article  CAS  PubMed  Google Scholar 

  • Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    Article  CAS  PubMed  Google Scholar 

  • Simeonova M, Wachner D, Gimsa J (2002) Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochemistry 56:215–218

    Article  CAS  PubMed  Google Scholar 

  • Simkó M (2004) Induction of cell activation processes by low frequency electromagnetic fields. Scientific World Journal 4:4–22

    Article  PubMed  CAS  Google Scholar 

  • Simko M (2007) Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14:1141–1152

    Article  CAS  PubMed  Google Scholar 

  • Singh AM, Dalton S (2014) Cell cycle regulation of pluripotent stem cells. Stem cells: from basic research to therapy: basic stem cell biology, tissue formation during development, and model organisms 1:3

    Google Scholar 

  • Soda A, Ikehara T, Kinouchi Y, Yoshizaki K (2008) Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. J Med Invest 55:267–278

    Article  PubMed  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  CAS  PubMed  Google Scholar 

  • Šrobár F (2012) Fröhlich systems in cellular physiology. Prague Med Rep 113:95–104

    Article  PubMed  Google Scholar 

  • Šrobár F (2013) Impact of mitochondrial electric field on modal occupancy in the Fröhlich model of cellular electromagnetism. Electromagn Biol Med 32:401–408

    Article  PubMed  CAS  Google Scholar 

  • St. John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Böhm K, Wollweber L, Tuszynski J, Unger E (2002) Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun 293:602–609

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Arai F, Hirao A (2005) Hematopoietic stem cells and their niche. Trends Immunol 26:426–433

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310

    Article  CAS  PubMed  Google Scholar 

  • Taylor GW, Harvey EN (1931) The theory of mitogenetic radiation. Biol Bull 61:280–293

    Article  Google Scholar 

  • Thar R, Kühl M (2004) Propagation of electromagnetic radiation in mitochondria? J Theor Biol 230:261–270

    Article  CAS  PubMed  Google Scholar 

  • Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA, Elias-Viñas D, Verdugo-Diaz L (2007) Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids Health Dis 6:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trushko A, Schäffer E, Howard J (2013) The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force. Proc Natl Acad Sci 110:14670–14675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai M-T, Li W-J, Tuan RS, Chang WH (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27:1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Valles JM (2002) Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys J 82:1260–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vladimirov YA, Proskurnina E (2009) Free radicals and cell chemiluminescence. Biochemistry (Moscow) 74:1545–1566

    Article  CAS  Google Scholar 

  • Walczak CE, Cai S, Khodjakov A (2010) Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11:91–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 6:3177–3185

    CAS  PubMed  Google Scholar 

  • Wang B (2010) Phosphoproteome studies of human mitotic spindle proteinslmu

    Google Scholar 

  • Wang C, Zhou H, Peng R, Wang L, Su Z, Chen P, Wang S, Wang S, Liu Y, Cong J (2013) Electromagnetic pulse reduces free radical generation in rat liver mitochondria in vitro. Free Radic Res 47:276–282

    Article  CAS  PubMed  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watt FM, Hogan B (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–726

    Article  CAS  PubMed  Google Scholar 

  • Wesbuer S, Lanvers-Kaminsky C, Duran-Seuberth I, Bolling T, Schafer K-L, Braun Y, Willich N, Greve B (2010) Association of telomerase activity with radio-and chemosensitivity of neuroblastomas. Radiat Oncol 5:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D, Taylor HS (2015) Endometrial stem cell transplantation in MPTP‐exposed primates: an alternative cell source for treatment of Parkinson's disease. J Cell Mol Med 19:249–256

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Dong L, Zhang B, Qi N (2010) Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 29:165–176

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, Atkinson SP, Saretzki G, Armstrong L, Lako M (2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 26:850–863

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H (2010) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285

    CAS  PubMed  Google Scholar 

  • Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, Yu SC, Qian GS (2011) Mitochondrial and energy metabolism‐related properties as novel indicators of lung cancer stem cells. Int J Cancer 129:820–831

    Article  CAS  PubMed  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zang L-Y, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477

    Google Scholar 

  • Zeni O, Di Pietro R, d'Ambrosio G, Massa R, Capri M, Naarala J, Juutilainen J, Scarfì MR (2007) Formation of reactive oxygen species in L929 cells after exposure to 900 MHz RF radiation with and without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone. Radiat Res 167:306–311

    Article  CAS  PubMed  Google Scholar 

  • Zhai M, Jing D, Tong S, Wu Y, Wang P, Zeng Z, Shen G, Wang X, Xu Q, Luo E (2016) Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/β‐catenin signaling‐associated mechanism. Bioelectromagnetics 37:152–162

    Article  CAS  Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang ZZ (2008) Mechanisms that mediate stem cell self‐renewal and differentiation. J Cell Biochem 103:709–718

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhan Q (2012) Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Forrester JV, McCaig CD (1999) A small, physiological electric field orients cell division. Proc Natl Acad Sci 96:4942–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, He H, Yang L, Chen S, Guo H, Xia L, Liu H, Qin Y, Liu C, Wei X (2012a) Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Arch Med Res 43:274–282

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C (2012b) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zmyślony M, Politanski P, Rajkowska E, Szymczak W, Jajte J (2004) Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 25:324–328

    Article  PubMed  CAS  Google Scholar 

  • Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, Sowa P, Polaniak R, Birkner E, Latocha M, Pilc K, Suchanek R (2005) Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes-an in vitro study. J Physiol Pharmacol 56:101

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mehran Solati for insightful discussions that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Sanati-Nezhad or Mohammad Mahdi Hasani-Sadrabadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamrin, S.H., Majedi, F.S., Tondar, M., Sanati-Nezhad, A., Hasani-Sadrabadi, M.M. (2016). Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171. Reviews of Physiology, Biochemistry and Pharmacology, vol 171. Springer, Cham. https://doi.org/10.1007/112_2016_4

Download citation

Publish with us

Policies and ethics