Skip to main content

Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks

  • Chapter
  • First Online:
One-Carbon Feedstocks for Sustainable Bioproduction

Abstract

With a presence of the Wood-Ljungdahl pathway, acetogenic bacteria are capable of converting C1 feedstocks into biomass and various metabolites, receiving industrial interest in microbial production of biochemicals derived from C1 substrates. To understand C1 feedstock fermentation using acetogenic bacteria, most of the studies have focused on revealing their carbon assimilation and energy conservation systems. Despite the determination of the essential mechanisms, a fundamental understanding of acetogenic bacteria and the associated complex regulatory systems remains unclear and is needed for rational strain design. For this purpose, systems biology is a suitable approach for investigating genome, transcription, translation, regulation systems, and metabolic flux, providing a glimpse of the relationship between the genotype and phenotype of the organisms. This chapter will cover recent systems biology applications on acetogenic bacteria and discuss the cellular responses during C1 feedstock fermentation along with the regulatory systems that orchestrate cellular processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York. https://doi.org/10.1007/0-387-30742-7_13

    Book  Google Scholar 

  2. Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. https://doi.org/10.1196/annals.1419.016

    Article  CAS  PubMed  Google Scholar 

  3. Ragsdale SW (1997) The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6(1):3–11. https://doi.org/10.1002/biof.5520060102

    Article  CAS  PubMed  Google Scholar 

  4. Schuchmann K, Muller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385. https://doi.org/10.1126/science.1244758

    Article  CAS  PubMed  Google Scholar 

  5. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450. https://doi.org/10.1146/annurev.mi.40.100186.002215

    Article  CAS  PubMed  Google Scholar 

  6. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784(12):1873–1898. https://doi.org/10.1016/j.bbapap.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821. https://doi.org/10.1038/nrmicro3365

    Article  CAS  PubMed  Google Scholar 

  8. Ragsdale SW (2008) Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136. https://doi.org/10.1196/annals.1419.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biegel E, Muller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107(42):18138–18142. https://doi.org/10.1073/pnas.1010318107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10(2-4):92–104. https://doi.org/10.1159/000091557

    Article  CAS  PubMed  Google Scholar 

  11. Kunkel A, Vorholt JA, Thauer RK, Hedderich R (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252(3):467–476. https://doi.org/10.1046/j.1432-1327.1998.2520467.x

    Article  CAS  PubMed  Google Scholar 

  12. Welte C, Kratzer C, Deppenmeier U (2010) Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 277(16):3396–3403. https://doi.org/10.1111/j.1742-4658.2010.07744.x

    Article  CAS  PubMed  Google Scholar 

  13. Ivey DM, Ljungdahl LG (1986) Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J Bacteriol 165(1):252–257. https://doi.org/10.1128/jb.165.1.252-257.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz O, Brandt K, Muller V, Faraldo-Gomez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat Commun 5:5286. https://doi.org/10.1038/ncomms6286

    Article  PubMed  Google Scholar 

  15. Reidlinger J, Muller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme. Eur J Biochem 223(1):275–283. https://doi.org/10.1111/j.1432-1033.1994.tb18992.x

    Article  CAS  PubMed  Google Scholar 

  16. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827(2):94–113. https://doi.org/10.1016/j.bbabio.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190(3):784–791. https://doi.org/10.1128/JB.01422-07

    Article  CAS  PubMed  Google Scholar 

  18. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13(12):787–794. https://doi.org/10.1038/nrmicro3565

    Article  CAS  PubMed  Google Scholar 

  19. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3(9):733–739. https://doi.org/10.1038/nrmicro1236

    Article  CAS  PubMed  Google Scholar 

  20. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  21. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512. https://doi.org/10.1126/science.7542800

    Article  CAS  PubMed  Google Scholar 

  22. Blattner FR, Plunkett 3rd G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462. https://doi.org/10.1126/science.277.5331.1453

    Article  CAS  PubMed  Google Scholar 

  23. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Cordani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O'Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandebol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. https://doi.org/10.1038/36786

    Article  CAS  PubMed  Google Scholar 

  24. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281(5375):375–388. https://doi.org/10.1126/science.281.5375.375

    Article  CAS  PubMed  Google Scholar 

  25. Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10(10):2550–2573. https://doi.org/10.1111/j.1462-2920.2008.01679.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43(6):701–715. https://doi.org/10.1128/JB.43.6.701-715.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457. https://doi.org/10.1128/JB.01582-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177(10):2628–2636. https://doi.org/10.1128/jb.177.10.2628-2636.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658. https://doi.org/10.1146/annurev-micro-090110-102801

    Article  CAS  PubMed  Google Scholar 

  30. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180

    Article  CAS  Google Scholar 

  31. Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK (2013) NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195(19):4373–4386. https://doi.org/10.1128/JB.00678-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258(3):1826–1832

    Article  CAS  Google Scholar 

  33. Ljungdahl LG, Andreesen JR (1975) Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium. FEBS Lett 54(2):279–282. https://doi.org/10.1016/0014-5793(75)80092-5

    Article  CAS  PubMed  Google Scholar 

  34. Wood H, Ljungdahl L (1991) Autotrophic character of the acetogenic bacteria, vol 1. Variations in autotrophic life. Academic, San Diego

    Google Scholar 

  35. Hugenholtz J, Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 7(3–4):383–389. https://doi.org/10.1111/j.1574-6968.1990.tb04941.x

    Article  CAS  PubMed  Google Scholar 

  36. Muller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353. https://doi.org/10.1128/aem.69.11.6345-6353.2003

    Article  PubMed  PubMed Central  Google Scholar 

  37. Biegel E, Schmidt S, Muller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11(6):1438–1443. https://doi.org/10.1111/j.1462-2920.2009.01871.x

    Article  CAS  PubMed  Google Scholar 

  38. Dangel W, Schulz H, Diekert G, König H, Fuchs G (1987) Occurrence of corrinoid-containing membrane proteins in anaerobic bacteria. Arch Microbiol 148(1):52–56. https://doi.org/10.1007/BF00429647

    Article  CAS  Google Scholar 

  39. Schmidt S, Biegel E, Muller V (2009) The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787(6):691–696. https://doi.org/10.1016/j.bbabio.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  40. Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thurmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Muller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7(3):e33439. https://doi.org/10.1371/journal.pone.0033439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wohlfarth G, Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155(4):378–381. https://doi.org/10.1007/BF00243458

    Article  CAS  Google Scholar 

  42. Bertsch J, Muller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81(17):5949–5956. https://doi.org/10.1128/AEM.01772-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verhagen MF, O'Rourke T, Adams MW (1999) The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412(3):212–229. https://doi.org/10.1016/s0005-2728(99)00062-6

    Article  CAS  PubMed  Google Scholar 

  44. Schuchmann K, Muller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287(37):31165–31171. https://doi.org/10.1074/jbc.M112.395038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imkamp F, Biegel E, Jayamani E, Buckel W, Muller V (2007) Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J Bacteriol 189(22):8145–8153. https://doi.org/10.1128/JB.01017-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaut M, Gottschalk G (1984) Protonmotive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24(1):103–107. https://doi.org/10.1111/j.1574-6968.1984.tb01253.x

    Article  CAS  Google Scholar 

  47. Westphal L, Wiechmann A, Baker J, Minton NP, Muller V (2018) The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J Bacteriol 200(21). https://doi.org/10.1128/JB.00357-18

  48. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43(2):232–236. https://doi.org/10.1099/00207713-43-2-232

    Article  CAS  PubMed  Google Scholar 

  49. Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092. https://doi.org/10.1073/pnas.1004716107

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Durre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036. https://doi.org/10.3389/fmicb.2016.01036

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. MBio 4(1):e00406-00412. https://doi.org/10.1128/mBio.00406-12

    Article  CAS  Google Scholar 

  52. Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J (2012) PGAP: pan-genomes analysis pipeline. Bioinformatics 28(3):416–418. https://doi.org/10.1093/bioinformatics/btr655

    Article  CAS  PubMed  Google Scholar 

  53. Shin J, Song Y, Jeong Y, Cho BK (2016) Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria. Front Microbiol 7:1531. https://doi.org/10.3389/fmicb.2016.01531

    Article  PubMed  PubMed Central  Google Scholar 

  54. O'Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248(2):403–408

    Article  CAS  Google Scholar 

  55. Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259(17):10845–10849

    Article  CAS  Google Scholar 

  56. Mock J, Wang S, Huang H, Kahnt J, Thauer RK (2014) Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 196(18):3303–3314. https://doi.org/10.1128/JB.01839-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B, Whited G, Andreesen JR, Gottschalk G, Daniel R, Durre P (2015) The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. MBio 6(5):e01168-01115. https://doi.org/10.1128/mBio.01168-15

    Article  CAS  Google Scholar 

  58. Ross DE, Marshall CW, Gulliver D, May HD, Norman RS (2020) Defining genomic and predicted metabolic features of the Acetobacterium genus. mSystems 5(5). https://doi.org/10.1128/mSystems.00277-20

  59. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20(11):631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23:133–140. https://doi.org/10.1016/j.mib.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  64. Tan Y, Liu J, Chen X, Zheng H, Li F (2013) RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically. Mol BioSyst 9(11):2775–2784. https://doi.org/10.1039/c3mb70232d

    Article  CAS  PubMed  Google Scholar 

  65. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Factories 12:118. https://doi.org/10.1186/1475-2859-12-118

    Article  CAS  Google Scholar 

  66. Aklujkar M, Leang C, Shrestha PM, Shrestha M, Lovley DR (2017) Transcriptomic profiles of clostridium ljungdahlii during lithotrophic growth with syngas or H2 and CO2 compared to organotrophic growth with fructose. Sci Rep 7(1):13135. https://doi.org/10.1038/s41598-017-12712-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman RW, Daniell J, Licona-Cassani C, Quek LE, Speight R, Hodson MP, Simpson SD, Mitchell WP, Kopke M, Nielsen LK (2016) Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chem 18(10):3020–3028. https://doi.org/10.1039/c5gc02708j

    Article  CAS  Google Scholar 

  68. Song Y, Shin J, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2018) Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics 19(1):837. https://doi.org/10.1186/s12864-018-5238-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shin J, Song Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2018) Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA 24(12):1839–1855. https://doi.org/10.1261/rna.068239.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Al-Bassam MM, Kim JN, Zaramela LS, Kellman BP, Zuniga C, Wozniak JM, Gonzalez DJ, Zengler K (2018) Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 9(1):4474. https://doi.org/10.1038/s41467-018-06993-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song Y, Shin J, Jeong Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2017) Determination of the genome and primary transcriptome of syngas fermenting Eubacterium limosum ATCC 8486. Sci Rep 7(1):13694. https://doi.org/10.1038/s41598-017-14123-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jeong J, Bertsch J, Hess V, Choi S, Choi IG, Chang IS, Muller V (2015) Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 81(14):4782–4790. https://doi.org/10.1128/AEM.00675-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Graham R, Graham C, McMullan G (2007) Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Factories 6(1):26. https://doi.org/10.1186/1475-2859-6-26

    Article  CAS  Google Scholar 

  74. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaberdin VR, Blasi U (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30(6):967–979. https://doi.org/10.1111/j.1574-6976.2006.00043.x

    Article  CAS  PubMed  Google Scholar 

  76. Subramanian AR (1983) Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol 28:101–142. https://doi.org/10.1016/s0079-6603(08)60085-9

    Article  CAS  PubMed  Google Scholar 

  77. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255. https://doi.org/10.1038/nature08756

    Article  CAS  PubMed  Google Scholar 

  78. Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105. https://doi.org/10.1016/j.mib.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  79. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. https://doi.org/10.1038/nrmicro1023

    Article  CAS  PubMed  Google Scholar 

  81. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305. https://doi.org/10.1038/nrmicro2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349. https://doi.org/10.1016/j.mib.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74. https://doi.org/10.1186/1752-0509-7-74

    Article  PubMed  PubMed Central  Google Scholar 

  84. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdottir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdottir S, Ng CY, Preciat G, Zagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV, Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, Aragon Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BO, Thiele I, Fleming RMT (2019) Creation and analysis of biochemical constraint-based models using the COBRA toolbox v.3.0. Nat Protoc 14(3):639–702. https://doi.org/10.1038/s41596-018-0098-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416. https://doi.org/10.1074/jbc.274.25.17410

    Article  CAS  PubMed  Google Scholar 

  86. Fang X, Lloyd CJ, Palsson BO (2020) Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00440-4

  87. Guan N, Du B, Li J, Shin HD, Chen RR, Du G, Chen J, Liu L (2018) Comparative genomics and transcriptomics analysis-guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production. Biotechnol Bioeng 115(2):483–494. https://doi.org/10.1002/bit.26478

    Article  CAS  PubMed  Google Scholar 

  88. Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jimenez NE, Zielinski DC, Quek LE, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee DY, Lewis NE (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443.e438. https://doi.org/10.1016/j.cels.2016.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cardoso JG, Andersen MR, Herrgard MJ, Sonnenschein N (2015) Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front Bioeng Biotechnol 3:13. https://doi.org/10.3389/fbioe.2015.00013

    Article  PubMed  PubMed Central  Google Scholar 

  90. McAnulty MJ, Yen JY, Freedman BG, Senger RS (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 6:42. https://doi.org/10.1186/1752-0509-6-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. https://doi.org/10.1002/bit.10803

    Article  CAS  PubMed  Google Scholar 

  92. Kumar M, Ji B, Zengler K, Nielsen J (2019) Modelling approaches for studying the microbiome. Nat Microbiol 4(8):1253–1267. https://doi.org/10.1038/s41564-019-0491-9

    Article  CAS  PubMed  Google Scholar 

  93. Guzman GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, Palsson BO, Feist AM (2015) Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci U S A 112(3):929–934. https://doi.org/10.1073/pnas.1414218112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363. https://doi.org/10.1371/journal.pcbi.1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501. https://doi.org/10.1038/msb.2011.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92. https://doi.org/10.1038/msb4100131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol (Camb) 7(8):869–882. https://doi.org/10.1039/c5ib00095e

    Article  CAS  Google Scholar 

  98. Song Y, Lee JS, Shin J, Lee GM, Jin S, Kang S, Lee JK, Kim DR, Lee EY, Kim SC, Cho S, Kim D, Cho BK (2020) Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proc Natl Acad Sci U S A 117(13):7516–7523. https://doi.org/10.1073/pnas.1912289117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu JK, Lloyd C, Al-Bassam MM, Ebrahim A, Kim JN, Olson C, Aksenov A, Dorrestein P, Zengler K (2019) Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Comput Biol 15(3):e1006848. https://doi.org/10.1371/journal.pcbi.1006848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Kopke M, Marcellin E (2019) Systems-level engineering and characterisation of clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 53:14–23. https://doi.org/10.1016/j.ymben.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  101. Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Durre P, Takors R (2021) Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis. Front Bioeng Biotechnol 9:647853. https://doi.org/10.3389/fbioe.2021.647853

    Article  PubMed  PubMed Central  Google Scholar 

  102. Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Kopke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211. https://doi.org/10.1016/j.ymben.2017.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Kwan Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, Y. et al. (2022). Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. In: Zeng, AP., Claassens, N.J. (eds) One-Carbon Feedstocks for Sustainable Bioproduction. Advances in Biochemical Engineering/Biotechnology, vol 180. Springer, Cham. https://doi.org/10.1007/10_2021_199

Download citation

Publish with us

Policies and ethics