Skip to main content

Nanogels Capable of Triggered Release

  • Chapter
  • First Online:
Tunable Hydrogels

Abstract

This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vinogradov S, Batrakova E, Kabanov A (1999) Poly(ethylene glycol)-polyethyleneimine NanoGel(TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B Biointerfaces 16:291–304. https://doi.org/10.1016/S0927-7765(99)00080-6

    Article  CAS  Google Scholar 

  2. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24:539–557. https://doi.org/10.1080/10717544.2016.1276232

    Article  CAS  PubMed  Google Scholar 

  3. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851. https://doi.org/10.1016/j.addr.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126. https://doi.org/10.1016/j.jconrel.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR (2019) Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 92:1–18. https://doi.org/10.1016/j.actbio.2019.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagahama K, Mori Y, Ohya Y, Ouchi T (2007) Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation. Biomacromolecules 8:2135–2141. https://doi.org/10.1021/bm070206t

    Article  CAS  PubMed  Google Scholar 

  7. Park CW, Yang HM, Woo MA, Lee KS, Kim JD (2017) Completely disintegrable redox-responsive poly(amino acid) nanogels for intracellular drug delivery. J Ind Eng Chem 45:182–188. https://doi.org/10.1016/j.jiec.2016.09.021

    Article  CAS  Google Scholar 

  8. Zhang L, Cao Z, Li Y, Ella-Menye JR, Bai T, Jiang S (2012) Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6:6681–6686. https://doi.org/10.1021/nn301159a

    Article  CAS  PubMed  Google Scholar 

  9. De Jong WH, Borm PJ a (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149. https://doi.org/10.2147/IJN.S596

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitra AK, Agrahari V, Mandal A, Cholkar K, Natarajan C, Shah S, Joseph M, Trinh HM, Vaishya R, Yang X, Hao Y, Khurana V, Pal D (2015) Novel delivery approaches for cancer therapeutics. J Control Release. https://doi.org/10.1016/j.jconrel.2015.09.067

  12. Textbook A (2014) Advanced textbook on gene transfer, gene therapy, and genetic pharmacology: principles, delivery, and pharmacological and biomedical applications of nucleotide-based therapies. ISBN 9781848168282

    Google Scholar 

  13. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827

    Article  CAS  Google Scholar 

  14. Zhang X, Malhotra S, Molina M, Haag R (2015) Micro- and nanogels with labile crosslinks-from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973. https://doi.org/10.1039/c4cs00341a

    Article  CAS  PubMed  Google Scholar 

  15. Akiyoshi K, Deguchi S, Tajima H, Nishikawa T, Sunamoto J (1997) Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–861

    Article  CAS  Google Scholar 

  16. Yuan F, Wang S, Chen G, Tu K, Jiang H, Wang LQ (2014) Novel chitosan-based pH-sensitive and disintegrable polyelectrolyte nanogels. Colloids Surf B Biointerfaces 122:194–201. https://doi.org/10.1016/j.colsurfb.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  17. Pilipenko I, Korzhikov-Vlakh V, Sharoyko V, Zhang N, Schäfer-Korting M, Rühl E, Zoschke C, Tennikova T (2019) pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics 11. https://doi.org/10.3390/pharmaceutics11070317

  18. Démoulins T, Milona P, Mccullough KC (2014) Alginate-coated chitosan nanogels differentially modulate class-A and class-B type CpG-ODN targeting of dendritic cells and intracellular delivery. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2014.06.003

  19. Curcio M, Diaz-Gomez L, Cirillo G, Concheiro A, Iemma F, Alvarez-Lorenzo C (2017) pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm 117:324–332. https://doi.org/10.1016/j.ejpb.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  20. Tan H, Jin H, Mei H, Zhu L, Wei W, Wang Q, Liang F, Zhang C, Li J, Qu X, Shangguan D, Huang Y, Yang Z (2012) PEG-urokinase nanogels with enhanced stability and controllable bioactivity. Soft Matter 8:2644–2650. https://doi.org/10.1039/c2sm07072c

    Article  CAS  Google Scholar 

  21. Hachet E, Sereni N, Pignot-Paintrand I, Ravaine V, Szarpak-Jankowska A, Auzély-Velty R (2014) Thiol-ene clickable hyaluronans: from macro-to nanogels. J Colloid Interface Sci 419:52–55. https://doi.org/10.1016/j.jcis.2013.12.044

    Article  CAS  PubMed  Google Scholar 

  22. Wang G, Nie Q, Zang C, Zhang B, Zhu Q, Luo G, Wang S (2016) Self-assembled thermoresponsive nanogels prepared by reverse micelle → positive micelle method for ophthalmic delivery of muscone, a poorly water-soluble drug. J Pharm Sci 105:2752–2759. https://doi.org/10.1016/j.xphs.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  23. Jung KO, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945. https://doi.org/10.1021/ja069150l

    Article  CAS  Google Scholar 

  24. Wei P, Gangapurwala G, Pretzel D, Leiske MN, Wang L, Hoeppener S, Schubert S, Brendel JC, Schubert US (2019) Smart pH-sensitive nanogels for controlled release in an acidic environment. Biomacromolecules 20:130–140. https://doi.org/10.1021/acs.biomac.8b01228

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Achazi K, Steinhilber D, Kratz F, Dernedde J, Haag R (2014) A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. J Control Release 174:209–216. https://doi.org/10.1016/j.jconrel.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Liao SC, Ting CW, Chiang WH (2020) Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery. J Colloid Interface Sci 561:11–22. https://doi.org/10.1016/j.jcis.2019.11.109

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Ding J, Li M, Chen X, Xiao C, Zhuang X, Huang Y, Chen X (2016) One-step “click Chemistry”-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy. ACS Appl Mater Interfaces 8:10673–10682. https://doi.org/10.1021/acsami.6b00426

    Article  CAS  PubMed  Google Scholar 

  28. Tarasenko I, Zashikhina N, Guryanov I, Volokitina M, Biondi B, Fiorucci S, Formaggio F, Tennikova T, Korzhikova-Vlakh E (2018) Amphiphilic polypeptides with prolonged enzymatic stability for the preparation of self-assembled nanobiomaterials. RSC Adv 8:34603–34613

    Article  CAS  Google Scholar 

  29. Iudin D, Zashikhina N, Demyanova E, Korzhikov-Vlakh V, Shcherbakova E, Boroznjak R, Tarasenko I, Zakharova N, Lavrentieva A, Skorik Y, Korzhikova-Vlakh E (2020) Polypeptide self-assembled nanoparticles as delivery systems for polymyxins B and E. Pharmaceutics 12:1–20. https://doi.org/10.3390/pharmaceutics12090868

    Article  CAS  Google Scholar 

  30. An D, Zhao D, Li X, Lu X, Qiu G, Shea KJ (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389. https://doi.org/10.1016/j.carbpol.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  31. Levit M, Zashikhina N, Vdovchenko A, Dobrodumov A, Zakharova N, Kashina A, Rühl E, Lavrentieva A, Scheper T, Tennikova T, Korzhikova-Vlakh E (2020) Bio-inspired amphiphilic block-copolymers based on synthetic glycopolymer and poly(amino acid) as potential drug delivery systems. Polymers. https://doi.org/10.3390/polym12010183

  32. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147. https://doi.org/10.1016/S0169-409X(01)00245-9

    Article  CAS  PubMed  Google Scholar 

  33. Kabanov AV (1999) Taking polycation gene delivery systems from in vitro to in vivo. Pharm Sci Technol Today 2:365–372. https://doi.org/10.1016/S1461-5347(99)00186-8

    Article  CAS  PubMed  Google Scholar 

  34. Osipova O, Sharoyko V, Zashikhina N, Zakharova N, Tennikova T, Urtti A, Korzhikova-Vlakh E (2020) Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells. Pharmaceutics 12:1–17. https://doi.org/10.3390/pharmaceutics12010039.

    Article  Google Scholar 

  35. Korzhikov-Vlakh V, Katernuk I, Pilipenko I, Lavrentieva A, Guryanov I, Sharoyko V, Manshina AA, Tennikova TB (2020) Photosensitive poly-l-lysine/heparin interpolyelectrolyte complexes for delivery of genetic drugs. Polymers 12:1077. https://doi.org/10.3390/polym12051077

    Article  CAS  PubMed Central  Google Scholar 

  36. Oh JK, Bencherif SA, Matyjaszewski K (2009) Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 50:4407–4423. https://doi.org/10.1016/j.polymer.2009.06.045

    Article  CAS  Google Scholar 

  37. Grazon C, Rieger J, Sanson N, Charleux B (2011) Study of poly(N,N-diethylacrylamide) nanogel formation by aqueous dispersion polymerization of N,N-diethylacrylamide in the presence of poly(ethylene oxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFT agents. Soft Matter 7:3482–3490. https://doi.org/10.1039/c0sm01181a

    Article  CAS  Google Scholar 

  38. Wei J, Yu H, Liu H, Du C, Zhou Z, Huang Q, Yao X (2018) Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization. J Mater Sci 53:12056–12064. https://doi.org/10.1007/s10853-018-2495-x

    Article  CAS  Google Scholar 

  39. An Z, Qiu Q, Liu G (2011) Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem Commun 47:12424–12440. https://doi.org/10.1039/c1cc13955j

    Article  CAS  Google Scholar 

  40. Pilipenko IM, Korzhikov-Vlakh VA, Zakharova NV, Urtti A, Tennikova TB (2020) Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide). Carbohydr Polym 248:116764. https://doi.org/10.1016/j.carbpol.2020.116764

    Article  CAS  PubMed  Google Scholar 

  41. Yang G, Fu S, Yao W, Wang X, Zha Q, Tang R (2017) Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids. J Colloid Interface Sci 504:25–38. https://doi.org/10.1016/j.jcis.2017.05.033

    Article  CAS  PubMed  Google Scholar 

  42. Pérez E, Fernández A, Olmo R, Teijón JM, Blanco MD (2014) PH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Colloids Surf B Biointerfaces 116:247–256. https://doi.org/10.1016/j.colsurfb.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  43. Cuggino JC, Molina M, Wedepohl S, Igarzabal CIA, Calderón M, Gugliotta LM (2016) Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. Eur Polym J 78:14–24. https://doi.org/10.1016/j.eurpolymj.2016.02.022

    Article  CAS  Google Scholar 

  44. Haag R, Stumbé JF, Sunder A, Frey H, Hebel A (2000) An approach to core-shell-type architectures in hyperbranched polyglycerols by selective chemical differentiation. Macromolecules 33:8158–8166. https://doi.org/10.1021/ma000831p

    Article  CAS  Google Scholar 

  45. Frey H, Haag R (2002) Dendritic polyglycerol: a new versatile biocompatible material. Rev Mol Biotechnol 90:257–267. https://doi.org/10.1016/S1389-0352(01)00063-0

    Article  CAS  Google Scholar 

  46. Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R (2019) One-pot synthesis of poly(glycerol-co-succinic acid) nanogels for dermal delivery. Biomacromolecules 20:1867–1875. https://doi.org/10.1021/acs.biomac.8b01741

    Article  CAS  PubMed  Google Scholar 

  47. Steinhilber D, Witting M, Zhang X, Staegemann M, Paulus F, Friess W, Küchler S, Haag R (2013) Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. J Control Release 169:289–295. https://doi.org/10.1016/j.jconrel.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  48. Theune LE, Charbaji R, Kar M, Wedepohl S, Hedtrich S, Calderón M (2019) Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Mater Sci Eng C 100:141–151. https://doi.org/10.1016/j.msec.2019.02.089

    Article  CAS  Google Scholar 

  49. Huang H, Remsen EE, Wooley KL (1998) Amphiphilic core-shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly(ethylene oxide) linkers. Chem Commun:1415–1416. https://doi.org/10.1039/a708686e

  50. Shim MS, Kwon YJ (2008) Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine. Biomacromolecules 9:1355–1355. https://doi.org/10.1021/bm800163c

    Article  CAS  Google Scholar 

  51. Jackson AW, Stakes C, Fulton DA (2011) The formation of core cross-linked star polymer and nanogel assemblies facilitated by the formation of dynamic covalent imine bonds. Polym Chem 2:2500–2511. https://doi.org/10.1039/c1py00261a

    Article  CAS  Google Scholar 

  52. Pérez-Álvarez L, Manuel Laza J, Álvarez-Bautista A (2016) Covalently and ionically crosslinked chitosan nanogels for drug delivery. Curr Pharm Des 22:3380–3398. https://doi.org/10.2174/1381612822666160216152008

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Zu M, Ma X, Jia D, Lu Y, Zhang T, Xue P, Kang Y, Xu Z (2020) Glutathione-responsive multifunctional “Trojan Horse” nanogel as a nanotheranostic for combined chemotherapy and photodynamic anticancer therapy. ACS Appl Mater Interfaces 12:50896–50908. https://doi.org/10.1021/acsami.0c15781

    Article  CAS  PubMed  Google Scholar 

  54. Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, Park JH, Lee SC (2008) Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun:6570–6572. https://doi.org/10.1039/b815918a

  55. Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments. Chem Commun 49:11007–11022. https://doi.org/10.1039/c3cc44272a

    Article  CAS  Google Scholar 

  56. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985. https://doi.org/10.1016/j.biomaterials.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  57. Fernandes Stefanello T, Szarpak-Jankowska A, Appaix F, Louage B, Hamard L, De Geest BG, Van Der Sanden B, Nakamura CV, Auzély-Velty R (2014) Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. Acta Biomater 10:4750–4758. https://doi.org/10.1016/j.actbio.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  58. Zhao L, Xiao C, Ding J, He P, Tang Z, Pang X, Zhuang X, Chen X (2013) Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomater 9:6535–6543. https://doi.org/10.1016/j.actbio.2013.01.040

    Article  CAS  PubMed  Google Scholar 

  59. Kertsomboon T, Chirachanchai S (2020) Amphiphilic biodegradable co-networks of poly(butylene succinate)-poly(ethylene glycol) chains for nano-gelation via click chemistry and its potential dispersant for multi-walled carbon nanotubes. Polym Degrad Stab 179:109266. https://doi.org/10.1016/j.polymdegradstab.2020.109266

    Article  CAS  Google Scholar 

  60. Joralemon MJ, O’Reilly RK, Hawker CJ, Wooley KL (2005) Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. J Am Chem Soc 127:16892–16899. https://doi.org/10.1021/ja053919x

    Article  CAS  PubMed  Google Scholar 

  61. Phan QT, Patil MP, Tu TTK, Do Kim G, Lim KT (2020) Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. React Funct Polym 147:104463. https://doi.org/10.1016/j.reactfunctpolym.2019.104463

    Article  CAS  Google Scholar 

  62. Oberoi HS, Laquer FC, Marky LA, Kabanov AV, Bronich TK (2011) Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II). J Control Release 153:64–72. https://doi.org/10.1016/j.jconrel.2011.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Siegwart DJ, Srinivasan A, Bencherif SA, Karunanidhi A, Jung KO, Vaidya S, Jin R, Hollinger JO, Matyjaszewski K (2009) Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10:2300–2309. https://doi.org/10.1021/bm9004904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding L, Jiang Y, Zhang J, Klok HA, Zhong Z (2018) PH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules 19:555–562. https://doi.org/10.1021/acs.biomac.7b01664

    Article  CAS  PubMed  Google Scholar 

  65. Vossen LI, Wedepohl S, Calderón M (2018) A facile, one-pot, surfactant-free nanoprecipitation method for the preparation of nanogels from polyglycerol-drug conjugates that can be freely assembled for combination therapy applications. Polymers 10:398. https://doi.org/10.3390/polym10040398

  66. Li C, Wu G, Ma R, Liu Y, Liu Y, Lv J, An Y, Shi L (2018) Nitrilotriacetic acid (NTA) and phenylboronic acid (PBA) functionalized nanogels for efficient encapsulation and controlled release of insulin. ACS Biomater Sci Eng 4:2007–2017. https://doi.org/10.1021/acsbiomaterials.7b00546

    Article  CAS  PubMed  Google Scholar 

  67. Massi L, Najer A, Chapman R, Spicer CD, Nele V, Che J, Booth MA, Doutch JJ, Stevens MM (2020) Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery. J Mater Chem B 8:8894–8907. https://doi.org/10.1039/d0tb01546f

    Article  CAS  PubMed  Google Scholar 

  68. Park K (2014) Controlled drug delivery systems: past forward and future back. J Control Release 190:3–8. https://doi.org/10.1016/j.jconrel.2014.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kohrs NJ, Liyanage T, Venkatesan N, Najarzadeh A, Puleo DA (2019) Drug delivery systems and controlled release. Encyclopedia Biomed Eng 1–3:316–329. ISBN 9780128051443

    Article  Google Scholar 

  70. Lin S, Chien Y (2013) Drug delivery: controlled release. In: Encyclopedia of pharmaceutical science and technology, 4th edn, pp 955–984. ISBN 9781841848198

    Google Scholar 

  71. Ahmed S, Alhareth K, Mignet N (2020) Advancement in nanogel formulations provides controlled drug release. Int J Pharm 584:119435. https://doi.org/10.1016/j.ijpharm.2020.119435

    Article  CAS  PubMed  Google Scholar 

  72. Soni G, Yadav KS (2016) Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J 24(2):133–139

    Article  Google Scholar 

  73. Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Zhang X, Tan W (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099. https://doi.org/10.1021/nn201171r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856

    Article  CAS  Google Scholar 

  75. Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC (2007) Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342:184–193. https://doi.org/10.1016/j.ijpharm.2007.04.038

    Article  CAS  PubMed  Google Scholar 

  76. Cazares-Cortes E, Espinosa A, Guigner J-M, Michel A, Griffete N, Wilhelm C, Ménager C (2017) Doxorubicin intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS Appl Mater Interfaces 9:25775–25788. https://doi.org/10.1021/acsami.7b06553

    Article  CAS  PubMed  Google Scholar 

  77. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ (2014) PH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710. https://doi.org/10.1016/j.biotechadv.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  78. Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR (2020) Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 589:119882. https://doi.org/10.1016/j.ijpharm.2020.119882

    Article  CAS  PubMed  Google Scholar 

  79. Aguilar MR, San Román JS (2014) Smart polymers and their applications. ISBN 9780857096951

    Google Scholar 

  80. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242. https://doi.org/10.3390/polym3031215

    Article  CAS  Google Scholar 

  81. Bordat A, Boissenot T, Nicolas J, Tsapis N (2019) Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 138:167–192. https://doi.org/10.1016/j.addr.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  82. Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Ghahramanzadeh Asl H, Mahdieh Z, Bozorgomid M, Ghasemi A, Rahmani Taji Boyuk MR, Hamblin MR (2016) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 8:21107–21133. https://doi.org/10.1021/acsami.6b00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A Chem 2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  84. Lanzalaco S, Armelin E (2017) Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3:36. https://doi.org/10.3390/gels3040036

  85. Mortensen K, Brown W (1993) Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size. Macromolecules 26:4128–4135. https://doi.org/10.1021/ma00068a010

    Article  CAS  Google Scholar 

  86. Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, Du Prez F (2000) Phase behaviour of poly(N-vinyl caprolactam) in water. Polymer (Guildf). 41:8597–8602. https://doi.org/10.1016/S0032-3861(00)00255-X

    Article  CAS  Google Scholar 

  87. Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896. https://doi.org/10.1021/ma0517042

  88. Aoshima S, Kanaoka S (2008) Synthesis of stimuli-responsive polymers by living polymerization: poly(N-isopropylacrylamide) and poly(vinyl ether)s. Adv Polym Sci 210:169–208

    Article  CAS  Google Scholar 

  89. Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994. https://doi.org/10.1002/anie.200901607

    Article  CAS  Google Scholar 

  90. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631. https://doi.org/10.1002/marc.201200354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Censi R, Vermonden T, van Steenbergen MJ, Deschout H, Braeckmans K, De Smedt SC, van Nostrum CF, di Martino P, Hennink WE (2009) Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. J Control Release 140:230–236. https://doi.org/10.1016/j.jconrel.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  92. Ayres L, Koch K, van Hest JCM (2005) Stimulus responsive behavior of elastin-based side chain polymers. Macromolecules 38:1699–1704. https://doi.org/10.1021/ma047923p

    Article  CAS  Google Scholar 

  93. Lv W, Liu S, Feng W, Qi J, Zhang G, Zhang F, Fan X (2011) Temperature- and redox-directed multiple self assembly of poly(N-isopropylacrylamide) grafted dextran nanogels. Macromol Rapid Commun 32:1101–1107. https://doi.org/10.1002/marc.201100112

    Article  CAS  PubMed  Google Scholar 

  94. Wang F, Xia G, Lang X, Wang X, Bao Z, Shah Z, Cheng X, Kong M, Feng C, Liu Y, Chen X (2016) Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids Surf B Biointerfaces 148:147–156. https://doi.org/10.1016/j.colsurfb.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  95. Zschoche S, Rueda JC, Binner M, Komber H, Janke A, Arndt K-F, Lehmann S, Voit B (2012) Reversibly switchable pH- and thermoresponsive core-shell nanogels based on poly(NiPAAm)-graft-poly(2-carboxyethyl-2-oxazoline)s. Macromol Chem Phys 213:215–226. https://doi.org/10.1002/macp.201100388

    Article  CAS  Google Scholar 

  96. Qin Y, Chen J, Bi Y, Xu X, Zhou H, Gao J, Hu Y, Zhao Y, Chai Z (2015) Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater 17:201–209. https://doi.org/10.1016/j.actbio.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  97. Qureshi MA, Khatoon F (2019) Different types of smart nanogel for targeted delivery. J Sci Adv Mater Devices 4:201–212. https://doi.org/10.1016/j.jsamd.2019.04.004

    Article  Google Scholar 

  98. Huglin MB, Radwan MA (1991) Unperturbed dimensions of a zwitterionic polymethacrylate. Polym Int 26:97–104. https://doi.org/10.1002/pi.4990260208

    Article  CAS  Google Scholar 

  99. Mary P, Bendejacq DD, Labeau MP, Dupuis P (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B. https://doi.org/10.1021/jp071995b

  100. Plamper FA, Ballauff M, Müller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539. https://doi.org/10.1021/ja074720i

    Article  CAS  PubMed  Google Scholar 

  101. Zhou C, Chen Y, Huang M, Ling Y, Yang L, Zhao G, Chen J (2020) A pH and UCST thermo-responsive tri-block copolymer (PAA-b-PDMA-b-P(AM-co-AN)) with micellization and gelatinization in aqueous media for drug release. New J Chem 44:14551–14559. https://doi.org/10.1039/d0nj02755c

    Article  CAS  Google Scholar 

  102. Haas HC, Schuler NW (1964) Thermally reversible homopolymer gel systems. J Polym Sci Part B Polym Lett 2:1095–1096. https://doi.org/10.1002/pol.1964.110021203

    Article  Google Scholar 

  103. Seuring J, Agarwal S (2010) Non-ionic homo- and copolymers with H-donor and H-acceptor units with an UCST in water. Macromol Chem Phys 211:2109–2117. https://doi.org/10.1002/macp.201000147

  104. Seuring J, Agarwal S (2012) First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 45:3910–3918. https://doi.org/10.1021/ma300355k

  105. Zhang H, Guo S, Fu S, Zhao Y (2017) A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers 9:238. https://doi.org/10.3390/polym9060238

    Article  CAS  PubMed Central  Google Scholar 

  106. Yu X, Liu J, Xin Y, Zhan M, Xiao J, Lu L, Peng S (2019) Temperature and salt responsive zwitterionic polysulfamide-based nanogels with surface regeneration ability and controlled drug release. Polym Chem 10:6423–6431. https://doi.org/10.1039/c9py01548e

    Article  CAS  Google Scholar 

  107. Wust P, Seebass M, Nadobny J, Deuflhard P, Mönich G, Felix R (2009) Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int J Hyperthermia 25:517–528. https://doi.org/10.3109/02656730903287832

    Article  CAS  PubMed  Google Scholar 

  108. Unnithan AR, Sasikala ARK, Park CH, Kim CS (2019) Biomimetic nanoengineered materials for advanced drug delivery. ISBN 9780128149447

    Google Scholar 

  109. ter Haar G, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23:89–104. https://doi.org/10.1080/02656730601186138

    Article  PubMed  Google Scholar 

  110. Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, Hennink WE, Deckers R (2020) A doxorubicin-glucuronide prodrug released from nanogels activated by high-intensity focused ultrasound liberated β-glucuronidase. Pharmaceutics 12:536. https://doi.org/10.3390/pharmaceutics12060536

    Article  CAS  PubMed Central  Google Scholar 

  111. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808. https://doi.org/10.1016/j.addr.2011.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kari OK, Tavakoli S, Parkkila P, Baan S, Savolainen R, Ruoslahti T, Johansson NG, Ndika J, Alenius H, Viitala T, Urtti A, Lajunen T (2020) Light-activated liposomes coated with hyaluronic acid as a potential drug delivery system. Pharmaceutics 12:1–24. https://doi.org/10.3390/pharmaceutics12080763

    Article  CAS  Google Scholar 

  113. Zhang M, Wang T, Zhang L, Li L, Wang C (2015) Near-infrared light and pH-responsive polypyrrole@polyacrylic acid/fluorescent mesoporous silica nanoparticles for imaging and chemo-photothermal cancer therapy. Chem A Eur J 21:16162–16171. https://doi.org/10.1002/chem.201502177

    Article  CAS  Google Scholar 

  114. Yang H, Mao H, Wan Z, Zhu A, Guo M, Li Y, Li X, Wan J, Yang X, Shuai X, Chen H (2013) Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34:9124–9133. https://doi.org/10.1016/j.biomaterials.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  115. Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y (2017) A hybrid nanomaterial for the controlled generation of free radicals and oxidative destruction of hypoxic cancer cells. Angew Chem Int Ed 56:8801–8804. https://doi.org/10.1002/anie.201702898

    Article  CAS  Google Scholar 

  116. Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26:5646–5652. https://doi.org/10.1002/adma.201401825

    Article  CAS  PubMed  Google Scholar 

  117. Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N (2017) Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 123:70–83. https://doi.org/10.1016/j.carbon.2017.07.032.

    Article  CAS  Google Scholar 

  118. Irie M (1990) Photoresponsive polymers. Adv Polym Sci 94:26–67. https://doi.org/10.1007/bfb0043060

    Article  Google Scholar 

  119. Xiong X, del Campo A, Cui J (2019) Photoresponsive polymers. In: Aguilar MR, San Román J (eds) Smart polymers and their applications, pp 87–153. ISBN 978-0-85709-695-1. https://doi.org/10.1533/9780857097026.1.93

  120. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437. https://doi.org/10.1039/c1cs15023e

    Article  CAS  PubMed  Google Scholar 

  121. Tomatsu I, Hashidzume A, Harada A (2005) Photoresponsive hydrogel system using molecular recognition of α-cyclodextrin. Macromolecules. https://doi.org/10.1021/ma050670v

  122. Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C Photochem Rev 12:209–236

    Article  CAS  Google Scholar 

  123. Anastasiadis SH, Lygeraki MI, Athanassiou A, Farsari M, Pisignano D (2008) Reversibly photo-responsive polymer surfaces for controlled wettability. J Adhes Sci Technol 22:1853–1868. https://doi.org/10.1163/156856108X320014

    Article  CAS  Google Scholar 

  124. Szilágyi A, Sumaru K, Sugiura S, Takagi T, Shinbo T, Zrínyi M, Kanamori T (2007) Rewritable microrelief formation on photoresponsive hydrogel layers. Chem Mater 19:2730–2732. https://doi.org/10.1021/cm070444v

    Article  CAS  Google Scholar 

  125. Lee H, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed 46:2453–2457. https://doi.org/10.1002/anie.200604278

    Article  CAS  Google Scholar 

  126. Blanco-Lomas M, Samanta S, Campos PJ, Woolley GA, Sampedro D (2012) Reversible photocontrol of peptide conformation with a rhodopsin-like photoswitch. J Am Chem Soc 134:6960–6963. https://doi.org/10.1021/ja301868p

    Article  CAS  PubMed  Google Scholar 

  127. He J, Zhao Y (2011) Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dye Pigment 89:278–283. https://doi.org/10.1016/j.dyepig.2010.03.032

    Article  CAS  Google Scholar 

  128. Yan B, Boyer JC, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714–19717. https://doi.org/10.1021/ja209793b

    Article  CAS  PubMed  Google Scholar 

  129. Zhao H, Sterner ES, Coughlin EB, Theato P (2012) O-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45:1723–1736. https://doi.org/10.1021/ma201924h

    Article  CAS  Google Scholar 

  130. Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19:4887. https://doi.org/10.1039/b819968j

    Article  CAS  Google Scholar 

  131. Arumugam S, Popik VV (2011) Light-induced hetero-diels-alder cycloaddition: a facile and selective photoclick reaction. J Am Chem Soc 133:5573–5579. https://doi.org/10.1021/ja200356f

    Article  CAS  PubMed  Google Scholar 

  132. Li S, Szalai ML, Kevwitch RM, McGrath DV (2003) Dendrimer disassembly by benzyl ether depolymerization. J Am Chem Soc 125:10516–10517. https://doi.org/10.1021/ja0349960

    Article  CAS  PubMed  Google Scholar 

  133. Schumers JM, Fustin CA, Aydin C, Hoogenboom R, Schubert US, Gohy JF (2009) Are o-nitrobenzyl (meth)acrylate monomers polymerizable by controlled-radical polymerization? J Polym Sci Part A Polym Chem. https://doi.org/10.1002/pola.23693.

  134. Cabane E, Malinova V, Menon S, Palivan CG, Meier W (2011) Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7:9167–9176. https://doi.org/10.1039/c1sm05880k

    Article  CAS  Google Scholar 

  135. Xiao P, Zhang J, Zhao J, Stenzel MH (2017) Light-induced release of molecules from polymers. Prog Polym Sci 74:1–33. https://doi.org/10.1016/j.progpolymsci.2017.06.002

    Article  CAS  Google Scholar 

  136. Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN (2019) “smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol 8:1497–1509. https://doi.org/10.1016/j.jmrt.2018.03.007

    Article  CAS  Google Scholar 

  137. Bolze F, Jenni S, Sour A, Heitz V (2017) Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun. https://doi.org/10.1039/c7cc06133a

  138. Wang X, Zhou X, Wang J, Cao Z, Zhang L, Tang R (2016) Acid-labile copolymer micelles cross-linked by a twin ortho ester cross-linking agent: synthesis, characterization, and evaluation. Macromol Chem Phys 217:2182–2190. https://doi.org/10.1002/macp.201600234

    Article  CAS  Google Scholar 

  139. Li Y, Du W, Sun G, Wooley KL (2008) pH-responsive shell cross-linked nanoparticles with hydrolytically labile cross-links. Macromolecules 41:6605–6607. https://doi.org/10.1021/ma801737p

    Article  CAS  Google Scholar 

  140. Yoshida T, Lai TC, Kwon GS, Sako K (2013) PH-and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 10:1497–1513

    Article  CAS  Google Scholar 

  141. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137

    Article  Google Scholar 

  142. Nho YC, Park JS, Lim YM (2014) Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers. https://doi.org/10.3390/polym6030890

  143. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630. https://doi.org/10.1081/DDC-120003853

  144. Agut W, Brûlet A, Schatz C, Taton D, Lecommandoux S (2010) pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate]-b-poly(glutamic acid) double hydrophilic block copolymers. Langmuir 26:10546–10554. https://doi.org/10.1021/la1005693

    Article  CAS  PubMed  Google Scholar 

  145. Burke SE, Barrett CJ (2003) pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules 4:1773–1783. https://doi.org/10.1021/bm034184w

  146. Godbey WT, Barry MA, Saggau P, Wu KK, Mikos AG (2000) Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J Biomed Mater Res 51:321–328. https://doi.org/10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  147. Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TGM, Maysinger D, Kakkar A (2020) Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 317:216–231. https://doi.org/10.1016/j.jconrel.2019.11.029

    Article  CAS  PubMed  Google Scholar 

  148. Zhang X, Yang X, Ji J, Liu A, Zhai G (2016) Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 148:460–473

    Article  CAS  Google Scholar 

  149. Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R (2016) Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv 13:1177–1194. https://doi.org/10.1080/17425247.2016.1178232

    Article  CAS  PubMed  Google Scholar 

  150. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111:107–116. https://doi.org/10.1016/j.jconrel.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  151. Vinogradov SV (2010) Nanogels in the race for drug delivery. Nanomedicine 5:165–168. https://doi.org/10.2217/nnm.09.103

    Article  CAS  PubMed  Google Scholar 

  152. Tros de Ilarduya C, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170. https://doi.org/10.1016/j.ejps.2010.03.019

  153. Ita K (2020) Polyplexes for gene and nucleic acid delivery: progress and bottlenecks. Eur J Pharm Sci 150:105358. https://doi.org/10.1016/j.ejps.2020.105358

  154. Bus T, Traeger A, Schubert US (2018) The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 6:6904–6918. https://doi.org/10.1039/C8TB00967H

    Article  CAS  PubMed  Google Scholar 

  155. Shete HK, Prabhu RH, Patravale VB (2014) Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 14:460–474. https://doi.org/10.1166/jnn.2014.9082

    Article  CAS  PubMed  Google Scholar 

  156. Liang W, Lam JK (2012) Endosomal escape pathways for non-viral nucleic acid delivery systems. In: Molecular regulation of endocytosis. InTech. https://doi.org/10.5772/46006. ISBN: 978-953-51-0662-3

  157. Choy CJ, Geruntho JJ, Davis AL, Berkman CE (2016) Tunable pH-sensitive linker for controlled release. Bioconjug Chem 27:824–830. https://doi.org/10.1021/acs.bioconjchem.6b00027

    Article  CAS  PubMed  Google Scholar 

  158. Dong D-W, Tong S-W, Qi X-R (2013) Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers. J Biomed Mater Res A 101A:1336–1344. https://doi.org/10.1002/jbm.a.34450

    Article  CAS  Google Scholar 

  159. Leriche G, Nothisen M, Baumlin N, Muller CD, Bagnard D, Remy JS, Jacques SA, Wagner A (2015) Spiro diorthoester (SpiDo), a human plasma stable acid-sensitive cleavable linker for lysosomal release. Bioconjug Chem 26:1461–1465. https://doi.org/10.1021/acs.bioconjchem.5b00280

    Article  CAS  PubMed  Google Scholar 

  160. Parrott MC, Luft JC, Byrne JD, Fain JH, Napier ME, DeSimone JM (2010) Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J Am Chem Soc 132:17928–17932. https://doi.org/10.1021/ja108568g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu B, Thayumanavan S (2017) Substituent effects on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J Am Chem Soc 139:2306–2317. https://doi.org/10.1021/jacs.6b11181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cordes EH (2007) Mechanism and catalysis for the hydrolysis of acetals, ketals, and ortho esters. In: Progress in physical organic chemistry, vol 4, pp 1–44. ISBN 9780470171837

    Google Scholar 

  163. Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892. https://doi.org/10.1002/adma.200304621

    Article  CAS  Google Scholar 

  164. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:151. https://doi.org/10.3389/fphar.2014.00151

  165. Chen J, Wu M, Veroniaina H, Mukhopadhyay S, Li J, Wu Z, Wu Z, Qi X (2019) Poly(: N-isopropylacrylamide) derived nanogels demonstrated thermosensitive self-assembly and GSH-triggered drug release for efficient tumor therapy. Polym Chem 10:4031–4041. https://doi.org/10.1039/c9py00537d

    Article  CAS  Google Scholar 

  166. Chen W, Shah LA, Yuan L, Siddiq M, Hu J, Yang D (2015) Polymer-paclitaxel conjugates based on disulfide linkers for controlled drug release. RSC Adv 5:7559–7566. https://doi.org/10.1039/c4ra12856g

    Article  CAS  Google Scholar 

  167. Chandrawati R (2016) Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med 241:972–979. https://doi.org/10.1177/1535370216647186

  168. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun:4312. https://doi.org/10.1039/b506989k

  169. Franssen O, Stenekes RJ, Hennink W (1999) Controlled release of a model protein from enzymatically degrading dextran microspheres. J Control Release 59:219–228. https://doi.org/10.1016/S0168-3659(98)00193-X

    Article  CAS  PubMed  Google Scholar 

  170. Law B, Weissleder R, Tung C-H (2006) Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules 7:1261–1265. https://doi.org/10.1021/bm050920f

    Article  CAS  PubMed  Google Scholar 

  171. Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutoff MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007. https://doi.org/10.1021/bm070228f

  172. Ge J, Lu D, Yang C, Liu Z (2011) A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst. Macromol Rapid Commun 32:546–550. https://doi.org/10.1002/marc.201000746

    Article  CAS  PubMed  Google Scholar 

  173. Sun Z, Yi Z, Zhang H, Ma X, Su W, Sun X, Li X (2017) Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr Polym 175:159–169. https://doi.org/10.1016/j.carbpol.2017.07.078

    Article  CAS  PubMed  Google Scholar 

  174. Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X (2015) Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release. https://doi.org/10.1016/j.jconrel.2015.02.008

  175. Don TM, Lu KY, Lin LJ, Hsu CH, Wu JY, Mi FL (2017) Temperature/pH/enzyme triple-responsive cationic protein/PAA-b-PNIPAAm nanogels for controlled anticancer drug and photosensitizer delivery against multidrug resistant breast cancer cells. Mol Pharm 14:4648–4660. https://doi.org/10.1021/acs.molpharmaceut.7b00737

    Article  CAS  PubMed  Google Scholar 

  176. Bhattacharya M, Sadeghi A, Sarkhel S, Hagström M, Bahrpeyma S, Toropainen E, Auriola S, Urtti A (2020) Release of functional dexamethasone by intracellular enzymes: a modular peptide-based strategy for ocular drug delivery. J Control Release 327:584–594. https://doi.org/10.1016/j.jconrel.2020.09.005

    Article  CAS  PubMed  Google Scholar 

  177. Lee GY, Park K, Kim SY, Byun Y (2007) MMPs-specific PEGylated peptide-DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 67:646–654. https://doi.org/10.1016/j.ejpb.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  178. McDonald TO, Qu H, Saunders BR, Ulijn RV (2009) Branched peptide actuators for enzyme responsive hydrogel particles. Soft Matter 5:1728. https://doi.org/10.1039/b818174h

    Article  CAS  Google Scholar 

  179. Kang EB, Lee GB, In I, Park SY (2018) pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. Eur Polym J 101:96–104. https://doi.org/10.1016/j.eurpolymj.2018.02.016

    Article  CAS  Google Scholar 

  180. Yu L, Dong A, Guo R, Yang M, Deng L, Zhang J (2018) DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect. ACS Biomater Sci Eng 4:2424–2434. https://doi.org/10.1021/acsbiomaterials.8b00379

    Article  CAS  PubMed  Google Scholar 

  181. Vijayan VM, Vasudevan PN, Thomas V (2019) Polymeric nanogels for theranostic applications: a mini-review. Curr Nanosci 16:392–398. https://doi.org/10.2174/1573413715666190717145040

    Article  CAS  Google Scholar 

  182. Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M (2015) Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:509–533. https://doi.org/10.1002/wnan.1328

    Article  CAS  PubMed  Google Scholar 

  183. Lu N, Yang K, Li J, Weng Y, Yuan B, Ma Y (2013) Controlled drug loading and release of a stimuli-responsive lipogel consisting of poly(N-isopropylacrylamide) particles and lipids. J Phys Chem B 117:9677–9682. https://doi.org/10.1021/jp402826n

    Article  CAS  PubMed  Google Scholar 

  184. Okano T, Bae YH, Jacobs H, Kim SW (1990) Thermally on-off switching polymers for drug permeation and release. J Control Release 11:255–265. https://doi.org/10.1016/0168-3659(90)90138-J

    Article  CAS  Google Scholar 

  185. Ma S, Kurihara S, Tomimori Y, Kim S, Kwon E, Muramatsu A, Kanie K (2020) Self-assembly of photoresponsive azo-containing phospholipids with a polar group as the tail. RSC Adv 10:32984–32991. https://doi.org/10.1039/d0ra06803a

    Article  CAS  Google Scholar 

  186. Kim Y, Jeong D, Shinde VV, Hu Y, Kim C, Jung S (2020) Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 163:824–832. https://doi.org/10.1016/j.ijbiomac.2020.07.071

    Article  CAS  PubMed  Google Scholar 

  187. Shi Y, Truong VX, Kulkarni K, Qu Y, Simon GP, Boyd RL, Perlmutter P, Lithgow T, Forsythe JS (2015) Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B 3:8771–8774. https://doi.org/10.1039/c5tb01820j

    Article  CAS  PubMed  Google Scholar 

  188. Yuan Y, Min Y, Hu Q, Xing B, Liu B (2014) NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles. Nanoscale 6:11259–11272. https://doi.org/10.1039/c4nr03302g

    Article  CAS  PubMed  Google Scholar 

  189. Jiang J, Tong X, Morris D, Zhao Y (2006) Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39:4633–4640. https://doi.org/10.1021/ma060142z

    Article  CAS  Google Scholar 

  190. Hassanpour S, Bagheri M (2017) Dual-responsive semi-IPN copolymer nanogels based on poly (itaconic acid) and hydroxypropyl cellulose as a carrier for controlled drug release. J Polym Res 24:1–9. https://doi.org/10.1007/s10965-017-1246-z

    Article  CAS  Google Scholar 

  191. Zhang M, Asghar S, Tian C, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y (2021) Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma. Carbohydr Polym 253:117194. https://doi.org/10.1016/j.carbpol.2020.117194

    Article  CAS  PubMed  Google Scholar 

  192. Zashikhina NN, Volokitina MV, Korzhikov-Vlakh VA, Tarasenko II, Lavrentieva A, Scheper T, Rühl E, Orlova RV, Tennikova TB, Korzhikova-Vlakh EG (2017) Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery. Eur J Pharm Sci 109:1–12. https://doi.org/10.1016/j.ejps.2017.07.022

    Article  CAS  PubMed  Google Scholar 

  193. Chen K, Liao S, Guo S, Zhang H, Cai H, Gong Q, Gu Z, Luo K (2018) Enzyme/pH-sensitive dendritic polymer-DOX conjugate for cancer treatment. Sci China Mater 61:1462–1474. https://doi.org/10.1007/s40843-018-9277-8

    Article  CAS  Google Scholar 

  194. Wang C, Chen Q, Wang Z, Zhang X (2010) An enzyme-responsive polymeric superamphiphile. Angew Chem Int Ed 49:8612–8615. https://doi.org/10.1002/anie.201004253

    Article  CAS  Google Scholar 

  195. Yadav AR, Mohite SK (2020) Recent advances in protein and peptide drug delivery. Res J Pharm Dos Forms Technol. https://doi.org/10.5958/0975-4377.2020.00035.x

  196. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359. https://doi.org/10.1126/science.aan4672

  197. Kontturi LS, Van Den Dikkenberg J, Urtti A, Hennink WE, Mastrobattista E (2019) Light-triggered cellular delivery of oligonucleotides. Pharmaceutics 11:1–16. https://doi.org/10.3390/pharmaceutics11020090

    Article  CAS  Google Scholar 

  198. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520:609–611

    Article  CAS  Google Scholar 

  199. Chin L, Andersen JN, Futreal PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17:297–303. https://doi.org/10.1038/nm.2323

    Article  CAS  PubMed  Google Scholar 

  200. Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q (2020) Nanogel: a versatile nano-delivery system for biomedical applications. Pharmaceutics 12:290. https://doi.org/10.3390/pharmaceutics12030290

    Article  CAS  PubMed Central  Google Scholar 

  201. Yao Y, Wu JH, Cao SJ, Xu BY, Yan JT, Wu D, Li W, Zhang A (2020) Thermoresponsive nanogels from dendronized copolymers for complexation, protection and release of nucleic acids. Chinese J Polym Sci 38:1164–1170. https://doi.org/10.1007/s10118-020-2452-4

    Article  CAS  Google Scholar 

  202. Gebhart CL, Kabanov AV (2001) Evaluation of polyplexes as gene transfer agents. J Control Release 73:401–416. https://doi.org/10.1016/S0168-3659(01)00357-1.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang L, Cai L-H, Lienemann PS, Rossow T, Polenz I, Vallmajo-Martin Q, Ehrbar M, Na H, Mooney DJ, Weitz DA (2016) One-step microfluidic fabrication of polyelectrolyte microcapsules in aqueous conditions for protein release. Angew Chem Int Ed 55:13470–13474. https://doi.org/10.1002/anie.201606960

    Article  CAS  Google Scholar 

  204. Witting M, Molina M, Obst K, Plank R, Eckl KM, Hennies HC, Calderón M, Frieß W, Hedtrich S (2015) Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomed Nanotechnol Biol Med 11:1179–1187. https://doi.org/10.1016/j.nano.2015.02.017

    Article  CAS  Google Scholar 

  205. Ghaeini-Hesaroeiye S, Boddohi S, Vasheghani-Farahani E (2020) Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. Int J Biol Macromol 143:297–304. https://doi.org/10.1016/j.ijbiomac.2019.12.026

    Article  CAS  PubMed  Google Scholar 

  206. El Jundi A, Morille M, Bettache N, Bethry A, Berthelot J, Salvador J, Hunger S, Bakkour Y, Belamie E, Nottelet B (2020) Degradable double hydrophilic block copolymers and tripartite polyionic complex micelles thereof for small interfering ribonucleic acids (siRNA) delivery. J Colloid Interface Sci 580:449–459. https://doi.org/10.1016/j.jcis.2020.07.057

    Article  CAS  PubMed  Google Scholar 

  207. Aguirre G, Ramos J, Forcada J (2016) Advanced design of t and pH dual-responsive PDEAEMA–PVCL core–shell nanogels for siRNA delivery. J Polym Sci Part A Polym Chem 54:3203–3217. https://doi.org/10.1002/pola.28207

    Article  CAS  Google Scholar 

  208. Basak S, Khare HA, Roursgaard M, Kempen PJ, Lee JH, Bazban-Shotorbani S, Kræmer M, Chernyy S, Andresen TL, Almdal K, Kamaly N (2020) Simultaneous cross-linking and cross-polymerization of enzyme responsive polyethylene glycol nanogels in confined aqueous droplets for reduction of low-density lipoprotein oxidation. Biomacromolecules 22:386–398. https://doi.org/10.1021/acs.biomac.0c01238

  209. Obuobi S, Julin K, Fredheim EGA, Johannessen M, Škalko-Basnet N (2020) Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J Control Release 324:620–632. https://doi.org/10.1016/j.jconrel.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  210. Lee H, Mok H, Lee S, Oh YK, Park TG (2007) Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 119:245–252. https://doi.org/10.1016/j.jconrel.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  211. Chen W, Zheng M, Meng F, Cheng R, Deng C, Feijen J, Zhong Z (2013) In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromolecules 14:1214–1222. https://doi.org/10.1021/bm400206m

    Article  CAS  PubMed  Google Scholar 

  212. Yuan S, Li X, Shi X, Lu X (2019) Preparation of multiresponsive nanogels and their controlled release properties. Colloid Polym Sci 297:613–621. https://doi.org/10.1007/s00396-019-04481-x

    Article  CAS  Google Scholar 

  213. Qiao Z-Y, Zhang R, Du F-S, Liang D-H, Li Z-C (2011) Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 152:57–66. https://doi.org/10.1016/j.jconrel.2011.02.029

    Article  CAS  PubMed  Google Scholar 

  214. Bilalis P, Varlas S, Kiafa A, Velentzas A, Stravopodis D, Iatrou H (2016) Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J. Polym. Sci. Part A Polym. Chem. 54:1278–1288. https://doi.org/10.1002/pola.27971

    Article  CAS  Google Scholar 

  215. Curcio A, Marotta R, Riedinger A, Palumberi D, Falqui A, Pellegrino T (2012) Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem Commun 48:2400. https://doi.org/10.1039/c2cc17223b

    Article  CAS  Google Scholar 

  216. Zhang Y, Zhang J, Xing C, Zhang M, Wang L, Zhao H (2016) Protein nanogels with temperature-induced reversible structures and redox responsiveness. ACS Biomater Sci Eng 2:2266–2275. https://doi.org/10.1021/acsbiomaterials.6b00490

    Article  CAS  PubMed  Google Scholar 

  217. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257. https://doi.org/10.1080/10717544.2018.1474964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Rosales-Mendoza S, González-Ortega O (2019) Nanovaccines. Springer, Cham, ISBN 978-3-030-31667-9

    Book  Google Scholar 

  219. Durán-Lobato M, Carrillo-Conde B, Khairandish Y, Peppas NA (2014) Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules 15:2725–2734. https://doi.org/10.1021/bm500588x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578. https://doi.org/10.1038/nmat2784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding: The authors are grateful to Russian Science Foundation (project no. 19-73-10045) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Korzhikov-Vlakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhikov-Vlakh, V., Tennikova, T. (2021). Nanogels Capable of Triggered Release. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2021_163

Download citation

Publish with us

Policies and ethics