Skip to main content
Log in

Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to their highly desirable properties that combine the properties of both hydrogels and nanomaterials, smart nanogels own great potentials as active nanocarriers in medical applications. In this paper, thermo-responsive nanogels with uniform sizes less than 50 nm in diameter were synthesized using potassium persulfate (KPS)/N,N,N′,N′-tetramethylethylenediamine (TMEDA) as a initiator system via a facile surfactant-free precipitation radical polymerization of N-isopropylacrylamide (NIPAM) at room temperature. Both transmission electron microscopy and dynamic light scattering were used to characterize the morphologies and diameters of the PNIPAM nanogels. All nanogels with spherical shape exhibited a narrow size distribution, and the finest nanogels were 43 nm in diameter on average. The very fine and highly pure nanogels would be more promising for drug delivery carriers than the bulk gels or microgels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kim H, Kim B, Lee C, Ryu JL, Hong SJ, Kim J, Ha EJ, Paik HJ (2016) Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. J Mater Sci 51(18):8442–8451. https://doi.org/10.1007/s10853-016-0104-4

    Article  Google Scholar 

  2. Yallapu MM, Jaggi M, Chauhan SC (2011) Design and engineering of nanogels for cancer treatment. Drug Discov Today 16(9):457–463

    Article  Google Scholar 

  3. Yu X, Lei DY, Amin F, Hartmann R, Acuna GP, Guerrero-Martínez A, Maier SA, Tinnefeld P, Carregal-Romero S, Parak WJ (2013) Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8(5):480–493

    Article  Google Scholar 

  4. Hanabusa K, Suzuki M (2016) Physical gelation by low-molecular-weight compounds and development of gelators. Bull Chem Soc Jpn 89(2):174–182

    Article  Google Scholar 

  5. Nakagawa H, Fujiki M, Sato T, Suzuki M, Hanabusa K, Nakagawa H, Fujiki M, Sato T, Suzuki M, Hanabusa K (2017) Characteristics of gelation by amides based on trans-1,2-diaminocyclohexane: the importance of different substituents. Bull Chem Soc Jpn 90(3):312–321

    Article  Google Scholar 

  6. Huang CT, Shrestha LK, Ariga K, Hsu S (2017) A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J Mater Chem B 5(44):8854–8864

    Article  Google Scholar 

  7. Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45(15):4226–4251

    Article  Google Scholar 

  8. Khandare J, Calderón M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41(27):2824–2848

    Article  Google Scholar 

  9. Giulbudagian M, Asadian-Birjand M, Steinhilber D, Achazi K, Molina M, Calderon M (2014) Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 5(24):6909–6913

    Article  Google Scholar 

  10. Ferrer MCC, Dastgheyb S, Hickok NJ, Eckmann DM, Composto RJ (2014) Designing nanogel carriers for antibacterial applications. Acta Biomater 10(5):2105–2111

    Article  Google Scholar 

  11. Liu C, Yu J, Jiang G, Liu X, Li Z, Gao G, Liu F (2013) Thermosensitive poly (N -isopropylacrylamide) hydrophobic associated hydrogels: optical, swelling/deswelling, and mechanical properties. J Mater Sci 48(2):774–784. https://doi.org/10.1007/s10853-012-6794-3

    Article  Google Scholar 

  12. Alam A, Meng Q, Shi G, Arabi S, Ma J, Zhao N, Kuan H-C (2016) Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol 127:119–126

    Article  Google Scholar 

  13. Lv S-W, Liu Y, Xie M, Wang J, Yan X-W, Li Z, Dong W-G, Huang W-H (2016) Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano 10(6):6201–6210

    Article  Google Scholar 

  14. Pairatwachapun S, Paradee N, Sirivat A (2016) Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation. Carbohyd Polym 137:214–221

    Article  Google Scholar 

  15. Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181. https://doi.org/10.1007/s10853-015-9627-3

    Article  Google Scholar 

  16. Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186

    Article  Google Scholar 

  17. Scarpa JS, Mueller DD, Klotz IM (2002) Slow hydrogen–deuterium exchange in a non-.alpha.-helical polyamide. J Am Chem Soc 89(24):6024–6030

    Article  Google Scholar 

  18. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N -isopropylacrylamide. Colloids Surf 20(3):247–256

    Article  Google Scholar 

  19. Brijitta J, Tata B, Kaliyappan T (2009) Phase behavior of poly (N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J Nanosci Nanotechnol 9(9):5323–5328

    Article  Google Scholar 

  20. Gao J, Frisken BJ (2003) Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19(13):5212–5216

    Article  Google Scholar 

  21. Gao J, Frisken BJ (2003) Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 19(13):5217–5222

    Article  Google Scholar 

  22. Kuckling D, Vo CD, Adler H-J, Völkel A, Cölfen H (2006) Preparation and characterization of photo-cross-linked thermosensitive PNIPAAm nanogels. Macromolecules 39(4):1585–1591

    Article  Google Scholar 

  23. Vo CD, Kuckling D, Adler H-J, Schönhoff M (2002) Preparation of thermosensitive nanogels by photo-cross-linking. Colloid Polym Sci 280(5):400–409

    Article  Google Scholar 

  24. Kazakov S, Kaholek M, Kudasheva D, Teraoka I, Cowman MK, Levon K (2003) Poly (N-isopropylacrylamide-co-1-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors: atomic force microscopy and dynamic light scattering study. Langmuir 19(19):8086–8093

    Article  Google Scholar 

  25. Kazakov S, Kaholek M, Teraoka I, Levon K (2002) UV-induced gelation on nanometer scale using liposome reactor. Macromolecules 35(5):1911–1920

    Article  Google Scholar 

  26. Hu X, Tong Z, Lyon LA (2011) Control of poly (N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. Langmuir 27(7):4142–4148

    Article  Google Scholar 

  27. Wei J, Chen Y, Liu H, Du C, Yu H, Ru J, Zhou Z (2016) Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly (N-isopropylacrylamide)-based composite hydrogels. Ind Crops Prod 92:227–235

    Article  Google Scholar 

  28. Wei J, Chen Y, Liu H, Du C, Yu H, Zhou Z (2016) Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohyd Polym 147:201–207

    Article  Google Scholar 

  29. Shirangi M, Sastre TJ, Sellergren B, Hennink WE, Somsen GW, van Nostrum CF (2015) Methyleneation of peptides by N, N, N, N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study. Bioconjug Chem 26(1):90–100

    Article  Google Scholar 

  30. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Coll Interf Sci 85(1):1–33

    Article  Google Scholar 

  31. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210

    Article  Google Scholar 

  32. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218

    Article  Google Scholar 

  33. Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19(41):7203–7218

    Article  Google Scholar 

  34. Bardajee GR, Hooshyar Z, Farsi M, Mobini A, Sang G (2017) Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release. Mater Sci Eng C Mater Biol Appl 72:558–565

    Article  Google Scholar 

  35. Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33(22):749–753

    Article  Google Scholar 

  36. Vo CD, Kuckling D, Adler HJP, Schönhoff M (2002) Preparation of thermosensitive nanogels by photo-cross-linking. Colloid Polym Sci 280(5):400–409

    Article  Google Scholar 

  37. Morimoto N, Ohki T, Kurita K, Akiyoshi K (2008) Thermo-responsive hydrogels with nanodomains: rapid shrinking of a nanogel-crosslinking hydrogel of poly(N-isopropyl acrylamide). Die Unterrichtspraxis/teaching German 29(8):672–676

    Google Scholar 

  38. Schoff CK, Morfesis A (2007) Zeta potential. Jct Coatingstech 4(5):64–64

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 31370568), Opening Project from CAS Key Laboratory of Engineering Plastics, Institute of Chemistry (China), Public Welfare Projects of Zhejiang Province (No. 2017C33113), and Scientific Research Foundation of Zhejiang Agriculture and Forestry University (No. 2013FR088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Liu or Chungui Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Yu, H., Liu, H. et al. Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization. J Mater Sci 53, 12056–12064 (2018). https://doi.org/10.1007/s10853-018-2495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2495-x

Keywords

Navigation