Skip to main content

Digital Twins in Biomanufacturing

  • Chapter
  • First Online:
Digital Twins

Abstract

In recent years process modelling has become an established method which generates digital twins of manufacturing plant operation with the aid of numerically solved process models. This article discusses the benefits of establishing process modelling, in-house or by cooperation, in order to support the workflow from process development, piloting and engineering up to manufacturing. The examples are chosen from the variety of botanicals and biologics manufacturing thus proving the broad applicability from variable feedstock of natural plant extracts of secondary metabolites to fermentation of complex molecules like mAbs, fragments, proteins and peptides.

Consistent models and methods to simulate whole processes are available. To determine the physical properties used as model parameters, efficient laboratory-scale experiments are implemented. These parameters are case specific since there is no database for complex molecules of biologics and botanicals in pharmaceutical industry, yet.

Moreover, Quality-by-Design approaches, demanded by regulatory authorities, are integrated within those predictive modelling procedures. The models could be proven to be valid and predictive under regulatory aspects. Process modelling does earn its money from the first day of application. Process modelling is a key-enabling tool towards cost-efficient digitalization in chemical-pharmaceutical industries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

10-DAB:

10-Deacetylbaccatin III

AI:

Artificial intelligence

APC:

Advanced process control

ATF:

Alternating tangential flow filtration

ATPE:

Aqueous two-phase extraction

ATR:

Attenuated total reflectance

CAGR:

Compound annual growth rate

CAPEX:

Capital expenditure

CCF:

Cell culture fluid

cGSP:

Continuous Good Science Practice

ChPI:

Chemical-pharmaceutical industry

COG:

Cost of goods

CPP:

Critical process parameters

CQA:

Critical quality attributes

CV:

Column volume

DF:

Diafiltration

DoE:

Design of experiments

DSC:

Differential scanning calorimetry

DSP:

Downstream processing

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FFaM:

Frankfurt am Main

FMEA:

Failure mode and effects analysis

FTIR:

Fourier-transformed infrared spectroscopy

GC:

Gas Chromatography

GGW:

Equilibrium (german: Gleichgewicht)

GLP:

Good laboratory practice

GMP:

Good manufacturing practice

GWP:

Global Warming potential

HIC:

Hydrophobic interaction chromatography

HP:

Heavy phase

HPLC:

High pressure liquid chromatography

HPWE:

Hot pressurized water extraction

iCCC:

Integrated counter-current chromatography

IR:

Infrared

ICH:

International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use

IEX:

Ion exchange chromatography

IOT:

Internet of things

IP:

Interfacial partitioning

IPC:

Inline process control analytics

LLE:

Liquid–liquid extraction

LP:

Light phase

mAb:

Monoclonal antibody

MCSGP:

Multicolumn counter-current solvent gradient purification

MPC:

Model-based process control

MRSA:

Methicillin-resistant Staphylococcus aureus

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

NN:

Neuronal networks

OPEX:

Operational expenditure

OQ:

Operation qualification

PAT:

Process analytical technology

PCA:

Principle component analysis

PCS:

Process control system

Prot A:

Protein A chromatography

QA:

Quality assurance

QbD:

Quality-by-design

QTPP:

Quality target product profile

RPN:

Risk priority number

RTRT:

Real time release testing

SME:

Small and medium-sized enterprises

SOP:

Standard operation procedure

SPTFF:

Single-pass tangential flow filtration

TMP:

Trans membrane pressure

TÜV:

Technischer Überwachungsverein

UF:

Ultrafiltration

USP:

Upstream processing

UV:

Ultra violet light

VLP:

Virus-like particles

WHO:

World Health Organization

c [g/L]:

Concentration

Dax [cm2/s]:

Axial dispersion coefficient

Deff [cm2/s]:

Effective diffusion coefficient

dp [cm]:

Particle diameter

H:

Henry coefficient

Jv [L/m2 h]:

Flux

K [L/g]:

Langmuir coefficient

Keff [cm/s]:

Effective mass transfer coefficient

kf [cm/s]:

Film mass transfer coefficient

q [g/L]:

Loading

R [cm]:

Radius

Re:

Reynolds number

Sc:

Sherwood number

Sh:

Schmidt number

u [cm/s]:

Velocity

w:

Mass fractions

ε:

Porosity/voidage

τ:

Tortuosity coefficient

ψ:

Hindrance coefficient

col:

Column

con:

Continuous phase

dis:

Disperse phase

drop:

Drop

L:

Liquid

m:

Molecular

max:

Maximum

Mem:

Membrane

Osm:

Osmotic

p:

Pores/particles

t:

Total

References

  1. Bazzabella A, Förster A, Mathes B, Rübberdt K, Track T, Wagemann K, Westhaus U (2016) Digitalisierung in der Chemieindustrie. Whitepaper. https://dechema.de/dechema_media/Downloads/Positionspapiere/whitepaper_digitalisierung_final-p-20003450.pdf. Accessed 11 Nov 2019

  2. Panetta K. Blockchain, quantum computing, augmented analytics and artificial intelligence will drive disruption and new business models. https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/. Accessed 14 May 2020

  3. Lengauer T (2019) Statistische Datenanalyse in der Zeit von Big Data. In: Hacker J (ed) Natur – Wissenschaft – Gesellschaft: Rückblick und Ausblick nach zehn Jahren Nationale Akademie der Wissenschaften : Vorträge anlässlich der Jahresversammlung am 21. und 22. September 2018 in Halle (Saale), vol 424, pp 187–206

    Google Scholar 

  4. Grasshoff G (2012) Globalization of ancient knowledge: from babylonian observations to scientific regularities. In: Renn J (ed) The globalization of knowledge in history. Epubli GmbH, Berlin, pp 175–190

    Google Scholar 

  5. Reichert J, Kepler J (eds) (2004) Ioannis Kepleri Tabulae Rudolphinae. Originaler lateinischer Text und deutsche Übersetzung = Rudolphinische Tafeln. Königshausen & Neumann, Würzburg. ISBN: 9783826053528

    Google Scholar 

  6. Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys 354:769–822. https://doi.org/10.1002/andp.19163540702

    Article  Google Scholar 

  7. Lengauer T (2019) Statistische Datenanalyse in der Zeit von Big Data: Leistungsfähigkeit, Risiken und Grenzen. Tutzing-Symposium, Tutzing, Germany

    Google Scholar 

  8. Schuler H (1995) Prozessimulation. WILEY-VCH, Weinheim

    Google Scholar 

  9. Asprion N, Kaibel G (2010) Dividing wall columns: fundamentals and recent advances. Chem Eng Process Process Intensif 49:139–146. https://doi.org/10.1016/j.cep.2010.01.013

    Article  CAS  Google Scholar 

  10. Bernardi S, Gétaz D, Forrer N, Morbidelli M (2013) Modeling of mixed-mode chromatography of peptides. J Chromatogr A 1283:46–52. https://doi.org/10.1016/j.chroma.2013.01.054

    Article  CAS  PubMed  Google Scholar 

  11. Bortz M, Burger J, von Harbou E, Klein M, Schwientek J, Asprion N, Böttcher R, Küfer K-H, Hasse H (2017) Efficient approach for calculating Pareto boundaries under uncertainties in chemical process design. Ind Eng Chem Res 56:12672–12681. https://doi.org/10.1021/acs.iecr.7b02539

    Article  CAS  Google Scholar 

  12. Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Bortz M, Welke R, Küfer K-H, Hasse H (2014) Multi-objective optimization and decision support in process engineering – implementation and application. Chem Ing Tech 86:1065–1072. https://doi.org/10.1002/cite.201400008

    Article  CAS  Google Scholar 

  13. Burger J, Asprion N, Blagov S, Bortz M (2017) Simple perturbation scheme to consider uncertainty in equations of state for the use in process simulation. J Chem Eng Data 62:268–274. https://doi.org/10.1021/acs.jced.6b00633

    Article  CAS  Google Scholar 

  14. Gétaz D, Butté A, Morbidelli M (2013) Model-based design space determination of peptide chromatographic purification processes. J Chromatogr A 1284:80–87. https://doi.org/10.1016/j.chroma.2013.01.117

    Article  CAS  PubMed  Google Scholar 

  15. Hofer A, Kroll P, Herwig C (2019) Automated sampling and on-line analytics to increase process understanding. IFPAC annual meeting, Washington, USA

    Google Scholar 

  16. Sokolov M, Ritscher J, MacKinnon N, Souquet J, Broly H, Morbidelli M, Butté A (2017) Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality. Biotechnol Prog 33:1368–1380. https://doi.org/10.1002/btpr.2502

    Article  CAS  PubMed  Google Scholar 

  17. Steinwandter V, Borchert D, Herwig C (2019) Data science tools and applications on the way to Pharma 4.0. Drug Discov Today 24:1795–1805. https://doi.org/10.1016/j.drudis.2019.06.005

    Article  PubMed  Google Scholar 

  18. Ulonska S, Kroll P, Fricke J, Clemens C, Voges R, Müller MM, Herwig C (2018) Workflow for target-oriented parametrization of an enhanced mechanistic cell culture model. Biotechnol J 13:e1700395. https://doi.org/10.1002/biot.201700395

    Article  CAS  PubMed  Google Scholar 

  19. Wechselberger P, Seifert A, Herwig C (2010) PAT method to gather bioprocess parameters in real-time using simple input variables and first principle relationships. Chem Eng Sci 65:5734–5746. https://doi.org/10.1016/j.ces.2010.05.002

    Article  CAS  Google Scholar 

  20. Zahel T, Hauer S, Mueller EM, Murphy P, Abad S, Vasilieva E, Maurer D, Brocard C, Reinisch D, Sagmeister P, Herwig C (2017) Integrated process modeling – a process validation life cycle companion. Bioengineering 4. https://doi.org/10.3390/bioengineering4040086

  21. Bortz M, Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Scheithauer A, Welke R, Küfer K-H, Hasse H (2014) Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets. Comput Chem Eng 60:354–363. https://doi.org/10.1016/j.compchemeng.2013.09.015

    Article  CAS  Google Scholar 

  22. Bortz M, Maag V, Schwientek J, Benfer R, Böttcher R, Burger J, Ev H, Asprion N, Küfer K-H, Hasse H (2015) Decision support by multicriteria optimization in process development: an integrated approach for robust planning and design of plant experiments. In: Gernaey KV, Huusom JK, Gani R (eds) Computer aided chemical engineering: 12 international symposium on process systems engineering and 25 European symposium on computer aided process engineering, vol 37. Elsevier, pp 2063–2068

    Google Scholar 

  23. Briskot T, Stückler F, Wittkopp F, Williams C, Yang J, Konrad S, Doninger K, Griesbach J, Bennecke M, Hepbildikler S, Hubbuch J (2019) Prediction uncertainty assessment of chromatography models using Bayesian inference. J Chromatogr A 1587:101–110. https://doi.org/10.1016/j.chroma.2018.11.076

    Article  CAS  PubMed  Google Scholar 

  24. Großhans S, Wang G, Fischer C, Hubbuch J (2017) An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: process development strategy and continuous chromatography exploration. J Chromatogr A. https://doi.org/10.1016/j.chroma.2017.12.013

  25. Huuk TC, Briskot T, Hahn T, Hubbuch J (2016) A versatile noninvasive method for adsorber quantification in batch and column chromatography based on the ionic capacity. Biotechnol Prog 32:666–677. https://doi.org/10.1002/btpr.2228

    Article  CAS  PubMed  Google Scholar 

  26. Mailier J, Donoso-Bravo A, Wouwer AV (2012) A simple procedure for the identification of macroscopic bioprocess models: application to anaerobic digestion. IFAC proceedings volumes, vol 45, pp 665–670. https://doi.org/10.3182/20120215-3-AT-3016.00118

  27. Rüdt M, Briskot T, Hubbuch J (2017) Advances in downstream processing of biologics – spectroscopy: an emerging process analytical technology. J Chromatogr A 1490:2–9. https://doi.org/10.1016/j.chroma.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  28. Sokolov M, Soos M, Neunstoecklin B, Morbidelli M, Butté A, Leardi R, Solacroup T, Stettler M, Broly H (2015) Fingerprint detection and process prediction by multivariate analysis of fed-batch monoclonal antibody cell culture data. Biotechnol Prog 31:1633–1644. https://doi.org/10.1002/btpr.2174

    Article  CAS  PubMed  Google Scholar 

  29. Sokolov M, Ritscher J, MacKinnon N, Bielser J-M, Brühlmann D, Rothenhäusler D, Thanei G, Soos M, Stettler M, Souquet J, Broly H, Morbidelli M, Butté A (2017) Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody. Biotechnol Prog 33:181–191. https://doi.org/10.1002/btpr.2374

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Briskot T, Hahn T, Baumann P, Hubbuch J (2017) Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks. J Chromatogr A 1487:211–217. https://doi.org/10.1016/j.chroma.2017.01.068

    Article  CAS  PubMed  Google Scholar 

  31. Sargent RG (2011) Verification and validation of simulation models. In: Jain S (ed) Proceedings of the 2011 winter simulation conference: (WSC); 11–14 Dec. 2011, [Phoenix, Arizona, USA]; including the MASM (modeling and analysis for semiconductor manufacturing) conference. IEEE, Piscataway, NJ, pp 183–198

    Google Scholar 

  32. Sixt M, Uhlenbrock L, Strube J (2018) Toward a distinct and quantitative validation method for predictive process modelling – on the example of solid-liquid extraction processes of complex plant extracts. Processes 6:66. https://doi.org/10.3390/pr6060066

    Article  CAS  Google Scholar 

  33. Uhlenbrock L, Sixt M, Strube J (2017) Quality-by-design (QbD) process evaluation for phytopharmaceuticals on the example of 10-deacetylbaccatin III from yew. Resource. https://doi.org/10.1016/j.reffit.2017.03.001

  34. Carmona F, Soares Pereira AM (2013) Herbal medicines: old and new concepts, truths and misunderstandings. Rev Bras 23:379–385. https://doi.org/10.1590/S0102-695X2013005000018

    Article  Google Scholar 

  35. Saxena M, Jyoti S, Nema R, Dharmendra S, Abhishek G (2013) Phytochemistry of medicinal plants. J Pharm Phytochem 1:168–182

    Google Scholar 

  36. Cravotto G, Boffa L, Genzini L, Garella D (2010) Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther 35:11–48. https://doi.org/10.1111/j.1365-2710.2009.01096.x

    Article  CAS  PubMed  Google Scholar 

  37. He T-T, Ung COL, Hu H, Wang Y-T (2015) Good manufacturing practice (GMP) regulation of herbal medicine in comparative research: China GMP, cGMP, WHO-GMP, PIC/S and EU-GMP. Eur J Integr Med 7:55–66. https://doi.org/10.1016/j.eujim.2014.11.007

    Article  Google Scholar 

  38. Kroes BH (2014) The legal framework governing the quality of (traditional) herbal medicinal products in the European Union. J Ethnopharmacol 158(Pt B):449–453. https://doi.org/10.1016/j.jep.2014.07.044

    Article  PubMed  Google Scholar 

  39. Wiesner J, Knöss W (2014) Future visions for traditional and herbal medicinal products--a global practice for evaluation and regulation? J Ethnopharmacol 158(Pt B):516–518. https://doi.org/10.1016/j.jep.2014.08.015

    Article  PubMed  Google Scholar 

  40. Burton A, Smith M, Falkenberg T (2015) Building WHO’s global strategy for traditional medicine. Eur J Integr Med 7:13–15. https://doi.org/10.1016/j.eujim.2014.12.007

    Article  Google Scholar 

  41. Sikora T (2015) Good manufacturing practice (GMP) in the production of dietary supplements. In: Berginc K, Kreft S (eds) Dietary supplements: safety, efficacy and quality. Woodhead Pub Ltd., Amsterdam, pp 25–36

    Chapter  Google Scholar 

  42. Food and Drug Administration (2004) Guidance for industry. PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. FDA, Rockville

    Google Scholar 

  43. Food and Drug Administration (2004) Pharmaceutical cGMP for the 21st century. A risk based approach. FDA, Rockville

    Google Scholar 

  44. Food and Drug Administration (2004) Regulatory guidance: process analytical technology. FDA, Rockville

    Google Scholar 

  45. CMC Biotech Working Group (2009) A-Mab: a case study in bioprocess development. http://www.casss.org/?page=286

  46. CMC-Vaccines Working Group (2012) A-VAX: applying quality by design to vaccines. http://qbdworks.com/wp-content/uploads/2014/06/a-vax-applying-qbd-to-vaccines.pdf

  47. European Medicines Agency (2013) CHMP assessment report Perjeta. EMA, London

    Google Scholar 

  48. European Medicines Agency (2014) CHMP assessment report Gazyvaro. EMA, London

    Google Scholar 

  49. Khan IA, Smillie T (2012) Implementing a “Quality by Design” approach to assure the safety and integrity of botanical dietary supplements. J Nat Prod 75:1665–1673. https://doi.org/10.1021/np300434j

    Article  CAS  PubMed  Google Scholar 

  50. Kelsey R, Vance N (1992) Taxol and cephalomannine concentrations in the foilage and bark of shade-grown and sun-exposed Taxus brevifolia trees. J Nat Prod 55(7):912–917

    Article  CAS  Google Scholar 

  51. Ishikawa K (1990) Introduction to quality control. 3A Corp., Tokyo

    Google Scholar 

  52. IEC 56/1579/CD:2014 (2015) Failure mode and effects analysis. German commission for electrical, electronic and information technologies of DIN and VDE

    Google Scholar 

  53. Helling C, Strube J (2012) Modeling and experimental model parameter determination with quality by design for bioprocesses. In: Biopharmaceutical production technology. Wiley-VCH, Weinheim, pp 409–445

    Chapter  Google Scholar 

  54. Uhlenbrock L (2017) Quality by Design als Werkzeug der Qualitätssicherung bei der Extrakton pflanzlicher Arzneistoffe am Beispiel von Eibe. Masterthesis, TU Clausthal

    Google Scholar 

  55. Sixt M, Koudous I, Strube J (2016) Process design for integration of extraction, purification and formulation with alternative solvent concepts. C R Chim 19:733–748. https://doi.org/10.1016/j.crci.2015.12.016

    Article  CAS  Google Scholar 

  56. Bart H-J, Pilz S (2011) Industrial scale natural products extraction. Wiley Interscience, Hoboken

    Book  Google Scholar 

  57. Chémat F, Strube J (2015) Green extraction of natural products: theory and practice. Green chemistry. Wiley-VCH, Weinheim [Germany]

    Google Scholar 

  58. Johannes Gutenberg-Universität Mainz (2019) Förderung des interdisziplinären Forschungsverbunds ChemBioMed durch Carl-Zeiss-Stiftung: Von Universitätsmedizin Mainz, Biologie- und Chemie-Instituten der JGU gemeinsam initiiertes zukunftsorientiertes Forschungskonzept erhält eine Million Euro. https://www.uni-mainz.de/presse/52907.php. Accessed 25 May 2020

  59. Justus-Liebig-Universität Giessen LOEWE-Zentrum DRUID. https://www.uni-giessen.de/fbz/fb09/institute/ernaehrungswissenschaft/prof/becker/druid

  60. Ditz R (2012) Separation technologies 2030 – are 100 years of chromatography enough? Chem Ing Tech 84:875–879. https://doi.org/10.1002/cite.201200028

    Article  CAS  Google Scholar 

  61. Both S, Koudous I, Jenelten U, Strube J (2014) Model-based equipment-design for plant-based extraction processes – considering botanic and thermodynamic aspects. C R Chim 17:187–196. https://doi.org/10.1016/j.crci.2013.11.004

    Article  CAS  Google Scholar 

  62. Eggersglüss J, Both S, Strube J (2012) Process development for the extraction of biomolecules application for downstream processing of proteins in aqueous two-phase systems. Chim Oggi 30:32–36

    Google Scholar 

  63. Kassing M, Svec F, Jenelten U, Schenk J, Hänsch R, Strube J (2012) Combination of rigorous and statistical modeling for process development of plant-based extractions based on mass balances and biological aspects. Chem Eng Technol 35:109–132. https://doi.org/10.1002/ceat.201100268

    Article  CAS  Google Scholar 

  64. Koudous I, Both S, Gudi G, Schulz H, Strube J (2014) Process design based on physicochemical properties for the example of obtaining valuable products from plant-based extracts. C R Chim 17:218–231. https://doi.org/10.1016/j.crci.2013.11.003

    Article  CAS  Google Scholar 

  65. Koudous I, Sixt M, Strube J (2016) Model-based systematic interpretation of the extraction and purification of 10-deacetylbaccatin III from Taxus baccata. Berichte aus dem Julius Kühn-Institut

    Google Scholar 

  66. Sixt M, Strube J (2017) Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application. Resource. https://doi.org/10.1016/j.reffit.2017.03.007

  67. Sixt M, Strube J (2017) Systematic and model-assisted evaluation of solvent based- or pressurized hot water extraction for the extraction of Artemisinin from Artemisia annua L. Processes 5:86. https://doi.org/10.3390/pr5040086

    Article  CAS  Google Scholar 

  68. Sixt M, Strube J (2018) Systematic design and evaluation of an extraction process for traditionally used herbal medicine on the example of Hawthorn (Crataegus monogyna JACQ.). Processes 6:73. https://doi.org/10.3390/pr6070073

    Article  CAS  Google Scholar 

  69. Sixt M, Schmidt A, Mestmäcker F, Huter M, Uhlenbrock L, Strube J (2018) Systematic and model-assisted process design for the extraction and purification of Artemisinin from Artemisia annua L. – part I: conceptual process design and cost estimation. Processes 6:161. https://doi.org/10.3390/pr6090161

    Article  CAS  Google Scholar 

  70. Uhlenbrock L, Sixt M, Tegtmeier M, Schulz H, Hagels H, Ditz R, Strube J (2018) Natural products extraction of the future – sustainable manufacturing solutions for societal needs. Processes 6:177. https://doi.org/10.3390/pr6100177

    Article  Google Scholar 

  71. Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372. https://doi.org/10.1086/297173

    Article  Google Scholar 

  72. DECHEMA Datenbank. https://dechema.de/en/Media/Databases.html. Accessed 12 Nov 2019

  73. Dortmund Data Bank. http://www.ddbst.com/. Accessed 12 Nov 2019

  74. Kassing M, Jenelten U, Schenk J, Strube J (2010) A new approach for process development of plant-based extraction processes. Chem Eng Technol 33:377–387. https://doi.org/10.1002/ceat.200900480

    Article  CAS  Google Scholar 

  75. Pfennig. A Wissensbasierte Designmethode zur Auslegung von maßgeschneiderten Feststoffextraktoren auf der Basis von Laborversuchen. https://gvt.org/Forschung/IGF_Forschungsprojekte/Abgeschlossene+GVT_Vorhaben/16146+N.html. Accessed 25 May 2020

  76. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  77. Strube J (2000) Technische Chromatographie: Auslegung, Optimierung, Betrieb und Wirtschaftlichkeit. Univ., Habil.-Schr.--Dortmund, 1999, Als Ms. gedr. Berichte aus der Verfahrenstechnik. Shaker, Aachen

    Google Scholar 

  78. Sixt M. Methoden zur systematischen Gesamtprozessentwicklung und Prozessintensivierung von Extraktions- und Trennprozessen zur Gewinnung pflanzlicher Wertkomponenten. Dissertation, Technische Universität Clausthal; Shaker Verlag GmbH

    Google Scholar 

  79. Deibele L, Dohrn R (2006) Miniplant-Technik in der Prozessindustrie, 1. Aufl. WILEY-VCH, Weinheim

    Google Scholar 

  80. Steude HE, Deibele L, Schröter J (1997) MINIPLANT-Technik – ausgewählte Aspekte der apparativen Gestaltung. Chem Ing Tech 69:623–631. https://doi.org/10.1002/cite.330690504

    Article  CAS  Google Scholar 

  81. Strube J (2012) Prädiktive Modellierung von Trennverfahren. Chem Ing Tech 84:867. https://doi.org/10.1002/cite.201290051

    Article  CAS  Google Scholar 

  82. Huter MJ, Strube J (2019) Model-based design and process optimization of continuous single pass tangential flow filtration focusing on continuous bioprocessing. Processes 7:317. https://doi.org/10.3390/pr7060317

    Article  CAS  Google Scholar 

  83. Huter MJ, Jensch C, Strube J (2019) Model validation and process design of continuous single pass tangential flow filtration focusing on continuous bioprocessing for high protein concentrations. Processes 7:781. https://doi.org/10.3390/pr7110781

    Article  CAS  Google Scholar 

  84. Kornecki M, Strube J (2019) Accelerating biologics manufacturing by upstream process modelling. Processes 7:166. https://doi.org/10.3390/pr7030166

    Article  CAS  Google Scholar 

  85. Lohmann LJ, Strube J (2020) Accelerating biologics manufacturing by modeling: process integration of precipitation in mAb downstream processing. Processes 8:58. https://doi.org/10.3390/pr8010058

    Article  CAS  Google Scholar 

  86. Roth T, Uhlenbrock L, Strube J (2020) Distinct and quantitative validation for predictive process modelling in steam distillation of caraway fruits and lavender flower following a quality-by-design (QbD) approach. Processes 8:594. https://doi.org/10.3390/pr8050594

    Article  CAS  Google Scholar 

  87. Schmidt A, Strube J (2019) Distinct and quantitative validation method for predictive process modeling with examples of liquid-liquid extraction processes of complex feed mixtures. Processes 7:298. https://doi.org/10.3390/pr7050298

    Article  CAS  Google Scholar 

  88. Zobel-Roos S, Schmidt A, Mestmäcker F, Mouellef M, Huter M, Uhlenbrock L, Kornecki M, Lohmann L, Ditz R, Strube J (2019) Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? Processes 7:94. https://doi.org/10.3390/pr7020094

    Article  Google Scholar 

  89. Zobel-Roos S, Mouellef M, Ditz R, Strube J (2019) Distinct and quantitative validation method for predictive process modelling in preparative chromatography of synthetic and bio-based feed mixtures following a quality-by-design (QbD) approach. Processes 7:580. https://doi.org/10.3390/pr7090580

    Article  CAS  Google Scholar 

  90. Food and Drug Administration (2006) Guideline for implimentation of Q9. FDA, Rockville

    Google Scholar 

  91. Rolinger L, Rüdt M, Hubbuch J (2020) A critical review of recent trends, and a future perspective of optical spectroscopy as PAT in biopharmaceutical downstream processing. Anal Bioanal Chem 412:2047–2064. https://doi.org/10.1007/s00216-020-02407-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kornecki M, Strube J (2018) Process analytical technology for advanced process control in biologics manufacturing with the aid of macroscopic kinetic modeling. Bioengineering 5. https://doi.org/10.3390/bioengineering5010025

  93. Mestmäcker F, Schmidt A, Huter M, Sixt M, Strube J (2018) Systematic and model-assisted process design for the extraction and purification of Artemisinin from Artemisia annua L. – part III: chromatographic purification. Processes 6:180. https://doi.org/10.3390/pr6100180

    Article  CAS  Google Scholar 

  94. Gronemeyer P, Ditz R, Strube J (2016) DoE based integration approach of upstream and downstream processing regarding HCP and ATPE as harvest operation. Biochem Eng J 113:158–166. https://doi.org/10.1016/j.bej.2016.06.016

    Article  CAS  Google Scholar 

  95. Gronemeyer P, Thiess H, Zobel-Roos S, Ditz R, Strube J (2017) Integration of upstream and downstream in continuous biomanufacturing. In: Subramanian G (ed) Continuous biomanufacturing: innovative technologies and methods. WILEY-VCH, Weinheim, pp 481–510

    Chapter  Google Scholar 

  96. Kornecki M, Mestmäcker F, Zobel-Roos S, Heikaus de Figueiredo L, Schlüter H, Strube J (2017) Host cell proteins in biologics manufacturing: the good, the bad, and the ugly. Antibodies 6:13. https://doi.org/10.3390/antib6030013

    Article  CAS  PubMed Central  Google Scholar 

  97. Strube J, Ditz R, Kornecki M, Huter M, Schmidt A, Thiess H, Zobel-Roos S (2018) Process intensification in biologics manufacturing. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2018.09.022

  98. Hu WS, Zeng A-P (eds) (2012) Genomics and systems biology of Mammalian cell culture. Advances in biochemical engineering biotechnology, vol 127, 2nd edn. Springer, Berlin

    Google Scholar 

  99. Meyer UA, Zanger UM, Schwab M (2013) Omics and drug response. Annu Rev Pharmacol Toxicol 53:475–502. https://doi.org/10.1146/annurev-pharmtox-010510-100502

    Article  CAS  PubMed  Google Scholar 

  100. Schaub J, Clemens C, Schorn P, Hildebrandt T, Rust W, Mennerich D, Kaufmann H, Schulz TW (2010) CHO gene expression profiling in biopharmaceutical process analysis and design. Biotechnol Bioeng 105:431–438. https://doi.org/10.1002/bit.22549

    Article  CAS  PubMed  Google Scholar 

  101. Schaub J, Clemens C, Kaufmann H, Schulz TW (2012) Advancing biopharmaceutical process development by system-level data analysis and integration of Omics data. In: Hu WS, Zeng A-P (eds) Genomics and systems biology of mammalian cell culture, 2nd edn. Springer, Berlin, pp 133–163

    Google Scholar 

  102. Klepzig L, Strube J (2018) Rigorous modeling of lyophilization for botanicals and biologics process integration. Chem Ing Tech 90:1299. https://doi.org/10.1002/cite.201855362

    Article  CAS  Google Scholar 

  103. Klepzig L (2018) Rigorous modelling of lyophilisation for botanicals and biologics process integration. ProcessNet, Frankfurt am Main

    Google Scholar 

  104. Klepzig L (2018) Process modelling in combination with experimental model parameter determination. Pharmaceutical Freeze Drying Technology, Sevilla

    Google Scholar 

  105. Sommerfeld S, Strube J (2005) Challenges in biotechnology production – generic processes and process optimization for monoclonal antibodies. Chem Eng Process Process Intensif 44:1123–1137. https://doi.org/10.1016/j.cep.2005.03.006

    Article  CAS  Google Scholar 

  106. Strube J, Sommerfeld S, Lohrmann M (2007) Processes development and optimization for biotechnology production – monoclonal antibodies. In: Subramanian G (ed) Bioseparation and bioprocessing: a handbook, 2., completely rev. ed. WILEY-VCH, Weinheim, New York, pp 65–99

    Google Scholar 

  107. Subramanian G (ed) (2017) Continuous biomanufacturing: innovative technologies and methods. WILEY-VCH, Weinheim

    Book  Google Scholar 

  108. Bio Rad. http://www.bio-rad.com/. Accessed 17 Nov 2018

  109. GE Healthcare. https://www.gehealthcare.com/. Accessed 17 Nov 2018

  110. GE Healthcare. A flexible antibody purification process based on ReadyToProcessTM products, application note 28-9403-48 AB. www.gehealthcare.com. Accessed 7 Dec 2015

  111. Merck Millipore. http://www.merckmillipore.com. Accessed 17 Nov 2018

  112. Pall Corporation. https://www.pall.com/. Accessed 17 Nov 2018

  113. Kornecki M, Schmidt A, Lohmann L, Huter M, Mestmäcker F, Klepzig L, Mouellef M, Zobel-Roos S, Strube J (2019) Accelerating biomanufacturing by modeling of continuous bioprocessing – piloting case study of monoclonal antibody manufacturing. Processes 7:495. https://doi.org/10.3390/pr7080495

    Article  CAS  Google Scholar 

  114. Ben Yahia B, Malphettes L, Heinzle E (2015) Macroscopic modeling of mammalian cell growth and metabolism. Appl Microbiol Biotechnol 99:7009–7024. https://doi.org/10.1007/s00253-015-6743-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kornecki M (2018) Host cell proteins in biologics manufacturing: a methodical and systematic integration of upstream and downstream processing. ACHEMA 2018, Frankfurt am Main

    Google Scholar 

  116. Kornecki M (2018) Process analytical technology mechanisms in biologics manufacturing. ACHEMA 2018, Frankfurt am Main

    Google Scholar 

  117. Kornecki M, Strube J (2018) Process analytical technology mechanisms in biologics manufacturing. Chem Ing Tech 90:1270. https://doi.org/10.1002/cite.201855302

    Article  CAS  Google Scholar 

  118. Huter M, Strube J (2018) Model-based optimization of SPTFF ultrafiltration for integration in continuous biopharmaceutical processing. Chem Ing Tech 90:1251. https://doi.org/10.1002/cite.201855263

    Article  CAS  Google Scholar 

  119. Huter M (2018) Modeling of continuous ultrafiltration for biopharmaceutical processes. ACHEMA, Frankfurt am Main

    Google Scholar 

  120. Thiess H, Leuthold M, Grummert U, Strube J (2017) Module design for ultrafiltration in biotechnology: hydraulic analysis and statistical modeling. J Membr Sci 540:440–453. https://doi.org/10.1016/j.memsci.2017.06.038

    Article  CAS  Google Scholar 

  121. Lucke M, Koudous I, Sixt M, Huter MJ, Strube J (2018) Integrating crystallization with experimental model parameter determination and modeling into conceptual process design for the purification of complex feed mixtures. Chem Eng Res Des 133:264–280. https://doi.org/10.1016/j.cherd.2018.03.029

    Article  CAS  Google Scholar 

  122. Zobel-Roos S (2018) Entwicklung, Modellierung und Validierung von integrierten kontinuierlichen Gegenstrom-Chromatographie-Prozessen, 1. Auflage. Thermische Verfahrens- und Prozesstechnik. Shaker, Herzogenrath

    Google Scholar 

  123. Altenhöner U, Meurer M, Strube J, Schmidt-Traub H (1997) Parameter estimation for the simulation of liquid chromatography. J Chromatogr A 769:59–69. https://doi.org/10.1016/S0021-9673(97)00173-8

    Article  Google Scholar 

  124. Carta G, Jungbauer A (2010) Protein chromatography: process development and scale-up. WILEY-VCH, Weinheim

    Book  Google Scholar 

  125. Rouquerol J, Baron GV, Denoyel R, Giesche H, Groen J, Klobes P, Levitz P, Neimark AV, Rigby S, Skudas R, Sing K, Thommes M, Unger K (2012) The characterization of macroporous solids: an overview of the methodology. Microporous Mesoporous Mater 154:2–6. https://doi.org/10.1016/j.micromeso.2011.09.031

    Article  CAS  Google Scholar 

  126. Guiochon G, Felinger A, Shirazi DG, Katti AM (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Elsevier Academic Press

    Google Scholar 

  127. Mazzotti M (2006) Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. J Chromatogr A 1126:311–322. https://doi.org/10.1016/j.chroma.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  128. Seidel-Morgenstern A (2004) Experimental determination of single solute and competitive adsorption isotherms. J Chromatogr A 1037:255–272. https://doi.org/10.1016/j.chroma.2003.11.108

    Article  CAS  PubMed  Google Scholar 

  129. Baur D, Angarita M, Muller-Spath T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J 11:920–931. https://doi.org/10.1002/biot.201500481

    Article  CAS  PubMed  Google Scholar 

  130. Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.393

    Article  CAS  PubMed  Google Scholar 

  131. Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9:766–775. https://doi.org/10.1002/biot.201300480

    Article  CAS  PubMed  Google Scholar 

  132. Papathanasiou MM, Avraamidou S, Oberdieck R, Mantalaris A, Steinebach F, Morbidelli M, Mueller-Spaeth T, Pistikopoulos EN (2016) Advanced control strategies for the multicolumn countercurrent solvent gradient purification process. AICHE J 62:2341–2357. https://doi.org/10.1002/aic.15203

    Article  CAS  Google Scholar 

  133. Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31:479–492. https://doi.org/10.1016/j.tibtech.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  134. Subramanian G (2017) Continuous biomanufacturing: innovative technologies and methods. WILEY-VCH, [S.l.]

    Google Scholar 

  135. Zobel S, Helling C, Strube J (2014) Integrated counter current chromatography (iCCC) – Von der SMB zum integrierten Prozess. Chem Ing Tech 86:1504. https://doi.org/10.1002/cite.201450275

    Article  Google Scholar 

  136. Zobel-Roos S, Stein D, Strube J (2018) Evaluation of continuous membrane chromatography concepts with an enhanced process simulation approach. Antibodies 7:13. https://doi.org/10.3390/antib7010013

    Article  CAS  PubMed Central  Google Scholar 

  137. Hribar G, Gillespie C (2015) Next generation biopharmaceutical downstream processing – continuous bioprocessing. PDA meeting on continuous manufacturing, Berlin

    Google Scholar 

  138. Pollard D. Merck Talk ppt. Advances towards automated continuous mAb processing

    Google Scholar 

  139. Müller-Späth T (2013) Productivity boost for biopurification: twin-column ultra-high resolution chromatography. Gen Eng Biotechnol News

    Google Scholar 

  140. Munk M (2015) What is holding industry back from implementing continuous processing: can Asia adopt more quickly? BioPharma Asia:16–22

    Google Scholar 

  141. Wagemann K, Rübberdt K (2015) Recommendation for a risk analysis for production processes with disposable bioreactors. https://dechema.de/dechema_media/SingleUse_RiskAnalysis_2015-p-20001335.pdf. Accessed 24 Feb 2017

  142. The Ottawa Hospital Research Institute Cell Manufacturing. http://www.ohri.ca/cellmanufacturing/. Accessed 20 Jan 2017

  143. Unger C, Skottman H, Blomberg P, Sirac Dilber M, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53. https://doi.org/10.1093/hmg/ddn079

    Article  CAS  PubMed  Google Scholar 

  144. Biechele P, Busse C, Solle D, Scheper T, Reardon K (2015) Sensor systems for bioprocess monitoring. Eng Life Sci 15:469–488. https://doi.org/10.1002/elsc.201500014

    Article  CAS  Google Scholar 

  145. Chandra JAP, Samuel RDS (2010) Modeling, simulation and control of bioreactors process parameters – remote experimentation approach. Int J Comput Appl 1:103–110. https://doi.org/10.5120/216-365

    Article  Google Scholar 

  146. Ionuţ-Aurelian Nisipeanu, Elena Bunciu, Roxana Stanică (2011) Bioprocesses parameters control in the case of a BIOSTAT A PLUS bioreactor

    Google Scholar 

  147. Teixeira AP, Oliveira R, Alves PM, Carrondo MJT (2009) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732. https://doi.org/10.1016/j.biotechadv.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  148. Schelden M, Lima W, Doerr EW, Wunderlich M, Rehmann L, Buchs J, Regestein L (2017) Online measurement of viscosity for biological systems in stirred tank bioreactors. Biotechnol Bioeng 114:990–997. https://doi.org/10.1002/bit.26219

    Article  CAS  PubMed  Google Scholar 

  149. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing May 20–21 2014 continuous manufacturing symposium. J Pharm Sci 104:813–820. https://doi.org/10.1002/jps.24268

    Article  CAS  PubMed  Google Scholar 

  150. Kroll P, Stelzer IV, Herwig C (2017) Soft sensor for monitoring biomass subpopulations in mammalian cell culture processes. Biotechnol Lett 39:1667–1673. https://doi.org/10.1007/s10529-017-2408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Winckler S, Krueger R, Schnitzler T, Zang W, Fischer R, Biselli M (2014) A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach. Bioprocess Biosyst Eng 37:901–912. https://doi.org/10.1007/s00449-013-1062-8

    Article  CAS  PubMed  Google Scholar 

  152. Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177. https://doi.org/10.1002/bit.20317

    Article  CAS  PubMed  Google Scholar 

  153. Weichert H, Becker M (2013) Online glucose-lactate monitoring and control in cell culture and microbial fermentation bioprocesses. BMC Proc 7:P18. https://doi.org/10.1186/1753-6561-7-S6-P18

    Article  PubMed Central  Google Scholar 

  154. Schmidberger T, Gutmann R, Bayer K, Kronthaler J, Huber R (2014) Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry. Biotechnol Prog 30:496–504. https://doi.org/10.1002/btpr.1853

    Article  CAS  PubMed  Google Scholar 

  155. Musmann C, Joeris K, Markert S, Solle D, Scheper T (2016) Spectroscopic methods and their applicability for high-throughput characterization of mammalian cell cultures in automated cell culture systems. Eng Life Sci 16:405–416. https://doi.org/10.1002/elsc.201500122

    Article  CAS  Google Scholar 

  156. Bluma A, Höpfner T, Lindner P, Rehbock C, Beutel S, Riechers D, Hitzmann B, Scheper T (2010) In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bioanal Chem 398:2429–2438. https://doi.org/10.1007/s00216-010-4181-y

    Article  CAS  PubMed  Google Scholar 

  157. Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123:77–94. https://doi.org/10.1016/B978-0-12-420138-5.00005-7

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kornecki M, Schmidt A, Strube J (2018) PAT as key-enabling technology for QbD in pharmaceutical manufacturing – a conceptual review on upstream and downstream processing. Chim Oggi 36:44–48

    CAS  Google Scholar 

  159. Schmidt A, Richter M, Rudolph F, Strube J (2017) Integration of aqueous two-phase extraction as cell harvest and capture operation in the manufacturing process of monoclonal antibodies. Antibodies 6:21. https://doi.org/10.3390/antib6040021

    Article  CAS  PubMed Central  Google Scholar 

  160. Linnhoff B (1994) Use pinch analysis to knock down capital costs and emissions. Chem Eng Prog:32–57

    Google Scholar 

  161. Moya JA, Boulamanti A (2016) Production costs from energy-intensive industries in the EU and third countries. EUR, Scientific and technical research series, vol 27729. Publications Office, Luxembourg

    Google Scholar 

  162. White DC (2012) Optimize energy use in distillation. Chem Eng Prog 108:37–42

    Google Scholar 

  163. Petlyuk FB (2004) Distillation theory and its application to optimal design of separation units. Cambridge series in chemical engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  164. Ritter SK (2017) Putting distillation out of business in the chemical industry. Chem Eng News 95:18–21

    Google Scholar 

  165. DECHEMA – Gesellschaft für Chemische Technik und Biotechnologie e.V. (2019). www.dechema.de

  166. Energie Informationsdienst. www.eid.de. Accessed 13 Nov 2019

  167. Verband der Chemischen Industrie e.V. www.vci.de. Accessed 13 Nov 2019

  168. Uhlenbrock L, Ditz R, Strube J (2019) Process engineering accelerating an economic industrialization towards a bio-based world. Molecules 24. https://doi.org/10.3390/molecules24101853

  169. Ausfelder F, Dura HE (2018) 1. Roadmap des Kopernikus-Projektes “Power-to-X”: Flexible Nutzung erneuerbarer Ressourcen (P2X): OPTIONEN FÜR EIN NACHHALTIGES ENERGIESYSTEM MIT POWER-TO-X TECHNOLOGIEN. https://dechema.de/dechema_media/Downloads/Positionspapiere/2018_Power_to_X-p-20003687.pdf. Accessed 11 Nov 2019

  170. Böhme C (2019) Innovations for a climate-friendly chemical production. https://www.basf.com/global/en/media/news-releases/2019/01/p-19-103.html. Accessed 11 Nov 2019

  171. IHK Braunschweig (2019) Das SALCOS-Projekt: “grüner Stahl” aus Salzgitter. https://www.braunschweig.ihk.de/wirtschaft-online/titelstory/das-salcos-projekt-gruener-stahl-aus-salzgitter/4465262. Accessed 11 Nov 2019

  172. Schmidt A, Mestmäcker F, Brückner L, Elwert T, Strube J (2019) Liquid-liquid extraction and chromatography process routes for the purification of lithium. Mater Sci Forum 959:79–99. https://doi.org/10.4028/www.scientific.net/MSF.959.79

    Article  Google Scholar 

  173. Bartlett C (2019) Digitalisation in the acid plant of the near future. CRU Sulphur + Sulphuric Acid 2019, Houston

    Google Scholar 

  174. Barton PI, Pantelides CC (1994) Modeling of combined discrete/continuous processes. AICHE J 40:966–979. https://doi.org/10.1002/aic.690400608

    Article  CAS  Google Scholar 

  175. Dunn IJ (2005) Biological reaction engineering: dynamic modelling fundamentals with simulation examples, 2., completely rev. edn. WILEY-VCH, Weinheim

    Google Scholar 

  176. Merz T, Crandall B (2019) Journey deploying data analytics for manufacturing insights. 2019 – OSIsoft PI World Gothenburg – life sciences, Gothenburg

    Google Scholar 

  177. Varsakelis D, von Stosch P (2019) Show me the money! Process modeling in pharma from the investor’s point of view. Processes 7:596. https://doi.org/10.3390/pr7090596

    Article  Google Scholar 

  178. Aspen Tech. https://www.aspentech.com/products/pages/aspenone-engineering/. Accessed 12 Nov 2019

  179. Process Systems Enterprise. https://www.psenterprise.com/concepts/apm. Accessed 12 Nov 2019

  180. Chemstations. https://www.chemstations.com/CHEMCAD/. Accessed 12 Nov 2019

  181. Ansys. https://www.ansys.com/products/fluids/ansys-fluent. Accessed 12 Nov 2019

  182. Open FOAM. https://www.openfoam.com/. Accessed 12 Nov 2019

  183. COSMOlogic. http://www.cosmologic.de/theory/cosmo-rs.html. Accessed 12 Nov 2019

  184. Intelligen I. http://www.intelligen.com/superpro_overview.html. Accessed 12 Nov 2019

  185. Forschungszentrum J. https://github.com/modsim/. Accessed 12 Nov 2019

  186. Insilico biotechnology. https://www.insilico-biotechnology.com/en/. Accessed 12 Nov 2019

  187. GoSilico GmbH. https://gosilico.com/chromx/. Accessed 12 Nov 2019

  188. Ypso-Facto. https://www.ypsofacto.com/services-chemical-software-chromworks.php. Accessed 12 Nov 2019

  189. JMP. https://www.jmp.com/. Accessed 12 Nov 2019

  190. Minitab. https://www.minitab.com/. Accessed 12 Nov 2019

  191. SAS. https://www.sas.com/. Accessed 12 Nov 2019

  192. Nist. https://www.nist.gov/data. Accessed 12 Nov 2019

Download references

Acknowledgments

The authors would like to thank the ITVP team for Aspen Custom Modeler™, OpenFoam® and MATLAB® simulations, JMP® statistic evaluations and COSMO-RS® thermodynamic calculations. Special thanks to Mourad Mouellef and Thomas Knebel as well as Professor Siemers and the Clausthal University of Technology (TUC) process automation group for their work on advanced process control and process analytical technology. Furthermore, the authors thank the TUC working groups of Dr. J. Namyslo for NMR analytics, Professor A. Schmidt for mass spectrometry analytics, Professor A. Weber for particle measurements and Professor D. Goldmann for metal ion analytics.

Funding: The authors want to thank the Bundesministerium für Wirtschaft und Energie (BMWi), especially Dr. M. Gahr (Projektträger FZ Jülich), for funding the scientific work.

Conflicts of Interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Strube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zobel-Roos, S., Schmidt, A., Uhlenbrock, L., Ditz, R., Köster, D., Strube, J. (2020). Digital Twins in Biomanufacturing. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 176. Springer, Cham. https://doi.org/10.1007/10_2020_146

Download citation

Publish with us

Policies and ethics