Skip to main content

Therapeutic Antibody Engineering and Selection Strategies

  • Chapter
  • First Online:
Current Applications of Pharmaceutical Biotechnology

Abstract

Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.

The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18:21–25. https://doi.org/10.1080/08998280.2005.11928028

    Article  Google Scholar 

  2. von Behring E, Kitasato S (1991) The mechanism of diphtheria immunity and tetanus immunity in animals. Mol Immunol 28:1317, 1319–1320

    Google Scholar 

  3. Davies DR, Chacko S (1993) Antibody structure. Acc Chem Res 26:421–427. https://doi.org/10.1021/ar00032a005

    Article  CAS  Google Scholar 

  4. Pauling L (1940) A theory of the structure and process of formation of antibodies. J Am Chem Soc 62:2643–2657. https://doi.org/10.1021/ja01867a018

    Article  CAS  Google Scholar 

  5. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  6. Hooks MA, Wade CS, Millikan WJ (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11:26–37

    CAS  Google Scholar 

  7. Singh S, Kumar NK, Dwiwedi P et al (2018) Monoclonal antibodies: a review. Curr Clin Pharmacol 13:85–99. https://doi.org/10.2174/1574884712666170809124728

    Article  CAS  Google Scholar 

  8. Strohl WR (2017) Analysis of the current antibody landscape. In: Antibody engineering and therapeutics. San Diego

    Google Scholar 

  9. Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunology, 5th edn. W. H. Freeman, New York

    Google Scholar 

  10. Poljak RJ, Amzel LM, Avey HP et al (1973) Three-dimensional structure of the Fab’ fragment of a human immunoglobulin at 2.8-A resolution. Proc Natl Acad Sci 70:3305–3310. https://doi.org/10.1073/pnas.70.12.3305

    Article  CAS  Google Scholar 

  11. Inbar D, Hochman J, Givol D (1972) Localization of antibody-combining sites within the variable portions of heavy and light chains. Proc Natl Acad Sci 69:2659–2662. https://doi.org/10.1073/pnas.69.9.2659

    Article  CAS  Google Scholar 

  12. Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58:640–656. https://doi.org/10.1016/j.addr.2006.01.026

    Article  CAS  Google Scholar 

  13. García Merino A (2011) Monoclonal antibodies. Basic features. Neurologia 26:301–306. https://doi.org/10.1016/j.nrl.2010.10.005

    Article  Google Scholar 

  14. Cruse JM, Lewis R (2010) Atlas of immunology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  15. Male D, Brostoff J, Roth D, Roitt I (2006) Immunology, 7th edn. Elsevier, Philadelphia

    Google Scholar 

  16. Vandyk L, Meek K (1992) Assembly of IgH CDR3: mechanism, regulation, and influence on antibody diversity. Int Rev Immunol 8:123–133. https://doi.org/10.3109/08830189209055568

    Article  CAS  Google Scholar 

  17. Morea V, Lesk AM, Tramontano A (2000) Antibody modeling: implications for engineering and design. Methods 20:267–279. https://doi.org/10.1006/meth.1999.0921

    Article  CAS  Google Scholar 

  18. Padlan EA, Abergel C, Tipper JP (1995) Identification of specificity-determining residues in antibodies. FASEB J 9:133–139. https://doi.org/10.1096/fasebj.9.1.7821752

    Article  CAS  Google Scholar 

  19. Mandigan M, Martinko J (2006) Brock biology of microorganisms, 11th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  20. O’Kennedy R, Fitzgerald S, Murphy C (2017) Don’t blame it all on antibodies – the need for exhaustive characterisation, appropriate handling, and addressing the issues that affect specificity. TrAC Trends Anal Chem 89:53–59. https://doi.org/10.1016/j.trac.2017.01.009

    Article  CAS  Google Scholar 

  21. Murphy K (2012) Janeway’s immunobiology, 8th edn. Garland Science, New York

    Google Scholar 

  22. Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci 73:3628–3632. https://doi.org/10.1073/pnas.73.10.3628

    Article  CAS  Google Scholar 

  23. Goodnow CC, Basten A (1989) Self-tolerance in B lymphocytes. Semin Immunol 1:125–135

    CAS  Google Scholar 

  24. Janeway C, Travers JP, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  25. Chan TD, Gatto D, Wood K et al (2009) Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J Immunol 183:3139–3149. https://doi.org/10.4049/jimmunol.0901690

    Article  CAS  Google Scholar 

  26. Parra D, Takizawa F, Sunyer JO (2013) Evolution of B cell immunity. Annu Rev Anim Biosci 1:65–97. https://doi.org/10.1146/annurev-animal-031412-103651

    Article  CAS  PubMed Central  Google Scholar 

  27. Goodnow CC, Vinuesa CG, Randall KL et al (2010) Control systems and decision making for antibody production. Nat Immunol 11:681–688. https://doi.org/10.1038/ni.1900

    Article  CAS  Google Scholar 

  28. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581. https://doi.org/10.1038/302575a0

    Article  CAS  Google Scholar 

  29. Oettinger M, Schatz D, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523. https://doi.org/10.1126/science.2360047

    Article  CAS  Google Scholar 

  30. Bassing CH, Alt FW, Hughes MM et al (2000) Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405:583–586. https://doi.org/10.1038/35014635

    Article  CAS  Google Scholar 

  31. Mansilla-Soto J, Cortes P (2003) VDJ recombination: artemis and its in vivo role in hairpin opening. J Exp Med 197:543–547. https://doi.org/10.1084/jem.20022210

    Article  CAS  PubMed Central  Google Scholar 

  32. Mak TW, Saunders ME (2006) The immunoglobulin genes. In: The immune response. Elsevier, Amsterdam, pp 179–208

    Google Scholar 

  33. Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta – Proteins Proteomics 1804:1151–1166. https://doi.org/10.1016/j.bbapap.2009.06.030

    Article  CAS  Google Scholar 

  34. Malu S, Malshetty V, Francis D, Cortes P (2012) Role of non-homologous end joining in V(D)J recombination. Immunol Res 54:233–246. https://doi.org/10.1007/s12026-012-8329-z

    Article  Google Scholar 

  35. Helmink BA, Sleckman BP (2012) The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30:175–202. https://doi.org/10.1146/annurev-immunol-030409-101320

    Article  CAS  PubMed Central  Google Scholar 

  36. Chu H (2013) VDJ recombination. Cell 94:411–414. https://doi.org/10.1016/S0092-8674(00)81580-9

    Article  Google Scholar 

  37. Elgert KD (2009) Immunology: understanding the immune system, 2nd edn. Wiley-Blacwell, New Jersey

    Google Scholar 

  38. Song H, Nie X, Basu S, Cerny J (1998) Antibody feedback and somatic mutation in B cells: regulation of mutation by immune complexes with IgG antibody. Immunol Rev 162:211–218. https://doi.org/10.1111/j.1600-065X.1998.tb01443.x

    Article  CAS  Google Scholar 

  39. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740

    Article  CAS  Google Scholar 

  40. Rajewsky K, Forster I, Cumano A (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238:1088–1094. https://doi.org/10.1126/science.3317826

    Article  CAS  Google Scholar 

  41. Manis JP, Tian M, Alt FW (2002) Mechanism and control of class-switch recombination. Trends Immunol 23:31–39. https://doi.org/10.1016/S1471-4906(01)02111-1

    Article  CAS  Google Scholar 

  42. Stavnezer J, Amemiya CT (2004) Evolution of isotype switching. Semin Immunol 16:257–275. https://doi.org/10.1016/j.smim.2004.08.005

    Article  CAS  Google Scholar 

  43. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15:137–148. https://doi.org/10.1038/nri3804

    Article  CAS  PubMed Central  Google Scholar 

  44. Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563. https://doi.org/10.1016/S0092-8674(00)00078-7

    Article  CAS  Google Scholar 

  45. Larson ED, Maizels N (2004) Transcription-coupled mutagenesis by the DNA deaminase AID. Genome Biol 5:211. https://doi.org/10.1186/gb-2004-5-3-211

    Article  PubMed Central  Google Scholar 

  46. Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107. https://doi.org/10.1038/nature01760

    Article  CAS  Google Scholar 

  47. Lin GG, Scott JG (2012) Germinal center organization and cellular dynamics. Immunity 100:130–134. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations

    Article  Google Scholar 

  48. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46:258–268. https://doi.org/10.1093/ilar.46.3.258

    Article  CAS  Google Scholar 

  49. Payne WJ, Marshall DL, Shockley RK, Martin WJ (1988) Clinical laboratory applications of monoclonal antibodies. Clin Microbiol Rev 1:313–329. https://doi.org/10.1128/cmr.1.3.313

    Article  PubMed Central  Google Scholar 

  50. Barbet J, Bardiès M, Bourgeois M et al (2012) In: Chames P (ed) Radiolabeled antibodies for cancer imaging and therapy BT – antibody engineering: methods and protocols, 2nd edn. Humana Press, Totowa, pp 681–697

    Google Scholar 

  51. Breedveld FC (2000) Therapeutic monoclonal antibodies. Lancet 355:735–740. https://doi.org/10.1016/S0140-6736(00)01034-5

    Article  CAS  Google Scholar 

  52. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x

    Article  CAS  PubMed Central  Google Scholar 

  53. Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299. https://doi.org/10.1038/349293a0

    Article  CAS  Google Scholar 

  54. Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother Emphasis Tumor Immunol 15:42–52

    Article  CAS  Google Scholar 

  55. Almagro JC, Fransson J (2008) Humanization of antibodies. Front Biosci 13:1619–1633

    CAS  Google Scholar 

  56. Pavlou AK, Belsey MJ (2005) The therapeutic antibodies market to 2008. Eur J Pharm Biopharm 59:389–396. https://doi.org/10.1016/j.ejpb.2004.11.007

    Article  Google Scholar 

  57. Schwarz EM, Ritchlin CT (2007) Clinical development of anti-RANKL therapy. Arthritis Res Ther 9:S7. https://doi.org/10.1186/ar2171

    Article  CAS  PubMed Central  Google Scholar 

  58. Teeling JL, French RR, Cragg MS et al (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104:1793–1800. https://doi.org/10.1182/blood-2004-01-0039

    Article  CAS  Google Scholar 

  59. Murphy AJ, Macdonald LE, Stevens S et al (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci 111:5153–5158. https://doi.org/10.1073/pnas.1324022111

    Article  CAS  Google Scholar 

  60. Kennedy PJ, Oliveira C, Granja PL, Sarmento B (2017) Antibodies and associates: partners in targeted drug delivery. Pharmacol Ther 177:129–145. https://doi.org/10.1016/j.pharmthera.2017.03.004

    Article  CAS  Google Scholar 

  61. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136. https://doi.org/10.1038/nbt1142

    Article  CAS  Google Scholar 

  62. Weir ANC, Nesbitt A, Chapman AP et al (2002) Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 30:512–516

    Article  CAS  Google Scholar 

  63. Fischer N, Léger O (2007) Bispecific antibodies: molecules that enable novel therapeutic strategies. Pathobiology 74:3–14. https://doi.org/10.1159/000101046

    Article  CAS  Google Scholar 

  64. Cuesta AM, Sánchez-Martín D, Sanz L et al (2009) In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLoS One 4:e5381. https://doi.org/10.1371/journal.pone.0005381

    Article  CAS  PubMed Central  Google Scholar 

  65. Oliveira SS, Aires da Silva F, Lourenco S et al (2012) Assessing combinatorial strategies to multimerize libraries of single-domain antibodies. Biotechnol Appl Biochem 59:193–204. https://doi.org/10.1002/bab.1011

    Article  CAS  Google Scholar 

  66. Thie H, Binius S, Schirrmann T et al (2009) Multimerization domains for antibody phage display and antibody production. N Biotechnol 26:314–321. https://doi.org/10.1016/j.nbt.2009.07.005

    Article  CAS  Google Scholar 

  67. Lambert JM (2013) Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 76:248–262. https://doi.org/10.1111/bcp.12044

    Article  CAS  Google Scholar 

  68. Casi G, Neri D (2012) Antibody–drug conjugates: basic concepts, examples and future perspectives. J Control Release 161:422–428. https://doi.org/10.1016/J.JCONREL.2012.01.026

    Article  CAS  Google Scholar 

  69. Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody–drug conjugates. Nat Chem 8:114–119. https://doi.org/10.1038/nchem.2415

    Article  CAS  Google Scholar 

  70. Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T et al (2019) Antibody–drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol 234:5628–5642. https://doi.org/10.1002/jcp.27419

    Article  CAS  Google Scholar 

  71. Arruebo M, Valladares M, González-Fernández Á (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009:1–24. https://doi.org/10.1155/2009/439389

    Article  CAS  Google Scholar 

  72. Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/J.ADDR.2013.11.009

    Article  CAS  Google Scholar 

  73. Krishnamurthy A, Jimeno A (2017) Bispecific antibodies for cancer therapy: a review. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2017.12.002

  74. Nagorsen D, Bargou R, Rüttinger D et al (2009) Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma 50:886–891. https://doi.org/10.1080/10428190902943077

    Article  CAS  Google Scholar 

  75. Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11:22–30

    CAS  Google Scholar 

  76. Gross G, Eshhar Z (2016) Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol 56:59–83. https://doi.org/10.1146/annurev-pharmtox-010814-124844

    Article  CAS  Google Scholar 

  77. Pule M, Finney H, Lawson A (2003) Artificial T-cell receptor. Cytotherapy 5:211–226. https://doi.org/10.1080/14653240310001488

    Article  CAS  Google Scholar 

  78. American Association for Cancer (2017) First-ever CAR T-cell therapy approved in U.S. Cancer Discov 7. https://doi.org/10.1158/2159-8290.CD-NB2017-126

  79. Grand View Research (2016) Monoclonal antibodies (mAbs) market size worth $138.6 billion by 2024

    Google Scholar 

  80. Elgundi Z, Reslan M, Cruz E et al (2016) The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2016.11.004

  81. Bunnak P, Allmendinger R, Ramasamy SV et al (2016) Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs. Biotechnol Prog 32:1324–1335. https://doi.org/10.1002/btpr.2323

    Article  CAS  PubMed Central  Google Scholar 

  82. Nieri P, Donadio D, Rossi S et al (2009) Antibodies for therapeutic uses and the evolution of biotechniques. Curr Med Chem 16:753–779. https://doi.org/10.2174/092986709787458380

    Article  CAS  Google Scholar 

  83. Orlandi R, Gussow DH, Jones PT, Winter G (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci 86:3833–3837. https://doi.org/10.1073/pnas.86.10.3833

    Article  CAS  Google Scholar 

  84. Gussow D, Ward ES, Griffiths AD et al (1989) Generating binding activities from Escherichia coli by expression of a repertoire of immunoglobulin variable domains. Cold Spring Harb Symp Quant Biol 54:265–272. https://doi.org/10.1101/SQB.1989.054.01.033

    Article  CAS  Google Scholar 

  85. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554. https://doi.org/10.1038/348552a0

    Article  CAS  Google Scholar 

  86. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116. https://doi.org/10.1038/nbt1126

    Article  CAS  Google Scholar 

  87. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16:3675–3700. https://doi.org/10.3390/molecules16053675

    Article  CAS  PubMed Central  Google Scholar 

  88. Adams JJ, Nelson B, Sidhu SS (2014) Recombinant genetic libraries and human monoclonal antibodies. Methods Mol Biol 1060:149–170. https://doi.org/10.1007/978-1-62703-586-6_9

    Article  CAS  Google Scholar 

  89. Aires da Silva F, Corte-Real S, Goncalves J (2008) Recombinant antibodies as therapeutic agents. BioDrugs 22:301–314. https://doi.org/10.2165/00063030-200822050-00003

    Article  CAS  Google Scholar 

  90. Hust M, Frenzel A, Meyer T et al (2012) Construction of human naive antibody gene libraries. In: Gene function analysis, methods in molecular biology. Humana Press, Totowa, pp 85–107

    Google Scholar 

  91. Vaughan TJ, Williams AJ, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314. https://doi.org/10.1038/nbt0396-309

    Article  CAS  Google Scholar 

  92. Soon Lim T, Khim Chan S (2016) Immune antibody libraries: manipulating the diverse immune repertoire for antibody discovery. Curr Pharm Des 22:6480–6489. https://doi.org/10.2174/1381612822666160923111924

    Article  CAS  Google Scholar 

  93. Posner B, Lee I, Itoh T et al (1993) A revised strategy for cloning antibody gene fragments in bacteria. Gene 128:111–117. https://doi.org/10.1016/0378-1119(93)90161-U

    Article  CAS  Google Scholar 

  94. Nuttall SD (2012) Overview and discovery of IgNARs and generation of VNARs. Methods Mol Biol 911:27–36. https://doi.org/10.1007/978-1-61779-968-6_3

    Article  CAS  Google Scholar 

  95. Wesolowski J, Alzogaray V, Reyelt J et al (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157–174. https://doi.org/10.1007/s00430-009-0116-7

    Article  CAS  PubMed Central  Google Scholar 

  96. Adams JJ, Sidhu SS (2014) Synthetic antibody technologies. Curr Opin Struct Biol 24:1–9. https://doi.org/10.1016/j.sbi.2013.11.003

    Article  CAS  Google Scholar 

  97. Hoogenboom HR, Winter G (1992) By-passing immunisation. J Mol Biol 227:381–388. https://doi.org/10.1016/0022-2836(92)90894-P

    Article  CAS  Google Scholar 

  98. Yang HY, Kang KJ, Chung JE, Shim H (2009) Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol Cells 27:225–235. https://doi.org/10.1007/s10059-009-0028-9

    Article  CAS  Google Scholar 

  99. Silacci M, Brack S, Schirru G et al (2005) Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5:2340–2350. https://doi.org/10.1002/pmic.200401273

    Article  CAS  Google Scholar 

  100. Cunha-santos C, Figueira TN, Borrego P, Oliveira SS (2016) Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors. AIDS 30(11):1691–1701

    Article  CAS  Google Scholar 

  101. Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445–470. https://doi.org/10.4161/mabs.24218

    Article  PubMed Central  Google Scholar 

  102. Prassler J, Thiel S, Pracht C et al (2011) HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413:261–278. https://doi.org/10.1016/j.jmb.2011.08.012

    Article  CAS  Google Scholar 

  103. Shim H (2015) Synthetic approach to the generation of antibody diversity. BMB Rep 48:489–494. https://doi.org/10.5483/BMBRep.2015.48.9.120

    Article  CAS  PubMed Central  Google Scholar 

  104. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57:486–498. https://doi.org/10.1016/j.ymeth.2012.06.012

    Article  CAS  Google Scholar 

  105. Hoet RM, Cohen EH, Kent RB et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348. https://doi.org/10.1038/nbt1067

    Article  CAS  Google Scholar 

  106. Soderlind E, Strandberg L, Jirholt P et al (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856. https://doi.org/10.1038/78458

    Article  CAS  Google Scholar 

  107. Hartwell L, Hood L, Goldberg M et al (2008) Genetics: from genes to genomes, 4th edn. McGraw Hill, New York

    Google Scholar 

  108. Bradbury ARM, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254. https://doi.org/10.1038/nbt.1791

    Article  CAS  PubMed Central  Google Scholar 

  109. Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci 88:7978–7982. https://doi.org/10.1073/pnas.88.18.7978

    Article  CAS  Google Scholar 

  110. Smith G (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  Google Scholar 

  111. Huang JX, Bishop-Hurley SL, Cooper MA (2012) Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother 56:4569–4582. https://doi.org/10.1128/AAC.00567-12

    Article  CAS  PubMed Central  Google Scholar 

  112. Barbas CF (1995) Synthetic human antibodies. Nat Med 1:837–839. https://doi.org/10.1038/340091a0

    Article  CAS  Google Scholar 

  113. Bain B, Brazil M (2003) Adalimumab. Nat Rev Drug Discov 2:693–694. https://doi.org/10.1038/nrd1182

    Article  CAS  Google Scholar 

  114. Vendel MC, Favis M, Snyder WB et al (2012) Secretion from bacterial versus mammalian cells yields a recombinant scFv with variable folding properties. Arch Biochem Biophys 526:188–193. https://doi.org/10.1016/j.abb.2011.12.018

    Article  CAS  Google Scholar 

  115. Lipovsek D, Plückthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67. https://doi.org/10.1016/j.jim.2004.04.008

    Article  CAS  Google Scholar 

  116. Ullman CG, Frigotto L, Cooley RN (2011) In vitro methods for peptide display and their applications. Brief Funct Genomics 10:125–134. https://doi.org/10.1093/bfgp/elr010

    Article  CAS  Google Scholar 

  117. Doerner A, Rhiel L, Zielonka S, Kolmar H (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588:278–287. https://doi.org/10.1016/j.febslet.2013.11.025

    Article  CAS  Google Scholar 

  118. Black CB, Duensing TD, Trinkle LS, Dunlay RT (2011) Cell-based screening using high-throughput flow cytometry. Assay Drug Dev Technol 9:13–20. https://doi.org/10.1089/adt.2010.0308

    Article  CAS  PubMed Central  Google Scholar 

  119. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  Google Scholar 

  120. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Yeast Surf Disp Methods Protoc Appl:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

  121. Koide S, Koide A, Lipovšek D (2012) Target-binding proteins based on the 10th human fibronectin type III domain (10 Fn3). Methods Enzymol 503:135–156. https://doi.org/10.1016/B978-0-12-396962-0.00006-9

    Article  CAS  Google Scholar 

  122. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106. https://doi.org/10.1016/j.abb.2012.03.009

    Article  CAS  Google Scholar 

  123. Zhou C, Jacobsen FW, Cai L et al (2010) Development of a novel mammalian cell surface antibody display platform. MAbs 2:508–518. https://doi.org/10.4161/mabs.2.5.12970

    Article  PubMed Central  Google Scholar 

  124. Mitchell Ho IP (2009) Mammalian cell display for antibody. Engineering 525:1–15. https://doi.org/10.1007/978-1-59745-554-1

    Article  Google Scholar 

  125. Zhang H, Wilson IA, Lerner RA (2012) Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries. Proc Natl Acad Sci U S A 109:15728–15733. https://doi.org/10.1073/pnas.1214275109

    Article  CAS  PubMed Central  Google Scholar 

  126. Beerli RR, Bauer M, Buser RB et al (2008) Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 105:14336–14341. https://doi.org/10.1073/pnas.0805942105

    Article  CAS  PubMed Central  Google Scholar 

  127. Walker JM (2012) Antibody engineering methods and protocols, 2nd edn. Humana Press, Totowa

    Google Scholar 

  128. Lu WC, Ellington AD (2013) In vitro selection of proteins via emulsion compartments. Methods 60:75–80. https://doi.org/10.1016/j.ymeth.2012.03.008

    Article  CAS  Google Scholar 

  129. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656. https://doi.org/10.1038/nbt0798-652

    Article  CAS  Google Scholar 

  130. Kennedy PJ, Oliveira C, Granja PL, Sarmento B (2017) Monoclonal antibodies: technologies for early discovery and engineering. Crit Rev Biotechnol 0:1–15. https://doi.org/10.1080/07388551.2017.1357002

    Article  CAS  Google Scholar 

  131. Lutz S (2011) Beyond directed evolution – semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743. https://doi.org/10.1016/j.copbio.2010.08.011.Beyond

    Article  Google Scholar 

  132. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci 97:10701–10705. https://doi.org/10.1073/pnas.170297297

    Article  CAS  Google Scholar 

  133. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394. https://doi.org/10.1038/nrg3927

    Article  CAS  PubMed Central  Google Scholar 

  134. Thie H, Voedisch B, Dübel S et al (2009) Affinity maturation by phage display. Methods Mol Biol 525:309–322. https://doi.org/10.1007/978-1-59745-554-1_16

    Article  CAS  Google Scholar 

  135. Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR Methods Appl 3:S136–S140

    Article  CAS  Google Scholar 

  136. Coia G, Hudson PJ, Irving RA (2001) Protein affinity maturation in vivo using E. coli mutator cells. J Immunol Methods 251:187–193. https://doi.org/10.1016/S0022-1759(01)00300-3

    Article  CAS  Google Scholar 

  137. Marks JD, Griffiths AD, Malmqvist M et al (1992) By-passing immunization: building high affinity human antibodies by chain shuffling. Nat Biotechnol 10:779–783. https://doi.org/10.1038/nbt0792-779

    Article  CAS  Google Scholar 

  138. Yang W-P, Green K, Pinz-Sweeney S et al (1995) CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 254:392–403. https://doi.org/10.1006/jmbi.1995.0626

    Article  CAS  Google Scholar 

  139. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898. https://doi.org/10.1038/nature08187

    Article  CAS  PubMed Central  Google Scholar 

  140. Hartl DL (2015) What can we learn from fitness landscapes? Curr Opin Microbiol:213–223. https://doi.org/10.1007/978-1-62703-673-3

  141. Leemhuis H, Stein V, Griffiths AD, Hollfelder F (2005) New genotype-phenotype linkages for directed evolution of functional proteins. Curr Opin Struct Biol 15:472–478. https://doi.org/10.1016/j.sbi.2005.07.006

    Article  CAS  Google Scholar 

  142. Arnold F, Georgiou G (2003) Directed evolution library creation. Humana Press, Totowa

    Book  Google Scholar 

  143. Smith SA, Crowe JE (2015) Use of human hybridoma technology to isolate human monoclonal antibodies. Microbiol Spectr 3:1–12. https://doi.org/10.1128/microbiolspec.AID

    Article  CAS  Google Scholar 

  144. Chan CEZ, Lim APC, MacAry PA, Hanson BJ (2014) The role of phage display in therapeutic antibody discovery. Int Immunol 26:649–657. https://doi.org/10.1093/intimm/dxu082

    Article  CAS  PubMed Central  Google Scholar 

  145. Ho M, Pastan I (2009) Display and selection of scFv antibodies on HEK-293T cells. In: Antibody phage display: methods and protocols, 2nd edn. Humana Press, Totowa, pp 99–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Goncalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ministro, J., Manuel, A.M., Goncalves, J. (2019). Therapeutic Antibody Engineering and Selection Strategies. In: Silva, A.C., Moreira, J.N., Lobo, J.M.S., Almeida, H. (eds) Current Applications of Pharmaceutical Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 171. Springer, Cham. https://doi.org/10.1007/10_2019_116

Download citation

Publish with us

Policies and ethics