Skip to main content
Log in

Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity

  • Published:
Molecules and Cells

Abstract

Antibody phage display provides a powerful and efficient tool for the discovery and development of monoclonal antibodies for therapeutic and other applications. Antibody clones from synthetic libraries with optimized design features have several distinct advantages that include high stability, high levels of expression, and ease of downstream optimization and engineering. In this study, a fully synthetic human scFv library with six diversified CDRs was constructed by polymerase chain reaction assembly of overlapping oligonucleotides. In order to maximize the functional diversity of the library, a β-lactamase selection strategy was employed in which the assembled scFv gene repertoire was fused to the 5′-end of the β-lactamase gene, and in-frame scFv clones were enriched by carbenicillin selection. A final library with an estimated total diversity of 7.6 × 109, greater than 70% functional diversity, and diversification of all six CDRs was obtained after insertion of fully randomized CDR-H3 sequences into this proofread repertoire. The performance of the library was validated using a number of target antigens, against which multiple unique scFv sequences with dissociation constants in the nanomolar range were isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., and Barbas, C.F., III (2001). generation of antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. In Phage Display: A Laboratory Manual, C.F. Barbas, III, D.R. Burton, J.K. Scott, and G.J. Silverman, eds. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 9.1–9.111.

    Google Scholar 

  • de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruine, A.P., Arends, J.W., and Hoogen-boom, H.R. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18218–18230.

    Article  PubMed  Google Scholar 

  • de Wildt, R.M., Mundy, C.R., Gorick, B.D., and Tomlinson, I.M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989–994.

    Article  PubMed  Google Scholar 

  • Faix, P.H., Burg, M.A., Gonzales, M., Ravey, E.P., Baird, A., and Larocca, D. (2004). Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. Biotechniques 36, 1018–1029.

    PubMed  CAS  Google Scholar 

  • Gerth, M.L., Patrick, W.M., and Lutz, S. (2004). A second-generation system for unbiased reading frame selection. Protein Eng. Des. Sel. 17, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., et al. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat. Biotechnol. 23, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom, H.R., and Chames, P. (2000). Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Jirholt, P., Ohlin, M., Borrebaeck, C.A., and Soderlind, E. (1998). Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.J., Park, Y., and Hong, H.J. (2005). Antibody engineering for the development of therapeutic antibodies. Mol. Cells 20, 17–29.

    PubMed  CAS  Google Scholar 

  • Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wolle, J., Pluckthun, A., and Virnekas, B. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.V., Liang, W.C., Dennis, M.S., Eigenbrot, C., Sidhu, S.S., and Fuh, G. (2004). High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073–1093.

    Article  PubMed  CAS  Google Scholar 

  • Loset, G.A., Lobersli, I., Kavlie, A., Stacy, J.E., Borgen, T., Kaus-mally, L., Hvattum, E., Simonsen, B., Hovda, M. B., and Brekke, O.H. (2005). Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. J. Immunol. Methods 299, 47–62.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, S., Fast, W., and Benkovic, S.J. (2002). A universal, vector-based system for nucleic acid reading-frame selection. Protein Eng. 15, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  • Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998). Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21769–21776.

    Article  PubMed  CAS  Google Scholar 

  • Rader, C., and Barbas, C.F., 3rd (1997). Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988). Reshaping human antibodies for therapy. Nature 332, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., et al, (2008). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. 376, 1182–1200.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.K., and Barbas, C.F., III (2001). Phage Display Vectors. In phage display: A Laboratory Manual, C.F. Barbas, III, D.R. Burton, J.K. Scott, and G.J. Silverman, eds. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 2.1–2.19.

    Google Scholar 

  • Seehaus, T., Breitling, F., Dubel, S., Klewinghaus, I., and Little, M. (1992). A vector for the removal of deletion mutants from antibody libraries. Gene 114, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Sidhu, S.S. (2001). Engineering M13 for phage display. Biomol. Eng. 18, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Sidhu, S.S., and Fellouse, F.A. (2006). Synthetic therapeutic antibodies. Nat. Chem. Biol. 2, 682–688.

    Article  PubMed  CAS  Google Scholar 

  • Silacci, M., Brack, S., Schirru, G., Marlind, J., Ettorre, A., Merlo, A., Viti, F., and Neri, D. (2005). Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5, 2340–2350.

    Article  PubMed  CAS  Google Scholar 

  • Soderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., et al, (2000). Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotechnol. 18, 852–856.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen, M., Milstein, C., and Winter, G. (1988). Reshaping human antibodies: grafting an antilysozyme activity. Science 239, 1534–1536.

    Article  PubMed  CAS  Google Scholar 

  • Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. (1994). Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.

    Article  PubMed  CAS  Google Scholar 

  • Zacchi, P., Sblattero, D., Florian, F., Marzari, R., and Bradbury, A.R. (2003). Selecting open reading frames from DNA. Genome Res. 13, 980–990.

    Article  PubMed  CAS  Google Scholar 

  • Zemlin, M., Klinger, M., Link, J., Zemlin, C., Bauer, K., Engler, J.A., Schroeder, H.W., Jr., and Kirkham, P.M. (2003). Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J. Mol. Biol. 334, 733–749.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunbo Shim.

About this article

Cite this article

Yang, H.Y., Kang, K.J., Chung, J.E. et al. Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol Cells 27, 225–235 (2009). https://doi.org/10.1007/s10059-009-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0028-9

Keywords

Navigation