Skip to main content

Isolation and Cultivation of Alkaliphiles

  • Chapter
  • First Online:
Alkaliphiles in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 172))

Abstract

Alkaliphilic microorganisms are ubiquitous and inhabit various econiches on Earth. Alkaline environments suitable for alkaliphilic microbial communities may be created by certain geological processes or human activities. Moreover, a significant contribution to the emergence of alkaline conditions may be due to the activity of neutralophilic microorganisms through certain reactions, which explains the widespread distribution of alkaliphiles. Alkaliphilic microorganisms are part of extremophiles and become interesting and useful in environmental and industrial microbiology. With increasing knowledge of alkaliphiles, we greatly increase their biotechnological and industrial application potential. New microorganisms from natural habitats serve as a practically endless source of new enzymes. This chapter summarizes the scattered data on alkaliphiles isolated from habitats other than soda lakes. The conditions for occurrence of alkaline habitats are also considered. Moreover, the chapter reviews some important features on preparation of media for the isolation and cultivation of alkaliphiles. The chapter also includes relevant information on chromatographic analysis of alkaliphiles culture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FID:

Flame ionization detector

GLC:

Gas-liquid chromatography

HPLC:

High-performance liquid chromatography

OTU:

Operational taxonomic unit

References

  1. Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118

    Chapter  Google Scholar 

  2. Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 3–15

    Chapter  Google Scholar 

  3. Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267

    Article  CAS  PubMed  Google Scholar 

  4. Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97

    Chapter  Google Scholar 

  5. Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Ant van Leeuwenhoek. J Microbiol Serol 1:143–147

    Google Scholar 

  6. Horikoshi K (2011) Introduction and history of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 19–26

    Chapter  Google Scholar 

  7. Niimura Y, Koh E, Yanagida F, Suzuki K-I, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301

    Article  CAS  Google Scholar 

  8. Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142

    Article  CAS  PubMed  Google Scholar 

  9. Grant WD, Jones BE (2016) Bacteria, archaea and viruses of soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cham, pp 97–147

    Google Scholar 

  10. Deocampo DM, Renaut RW (2016) Geochemistry of African soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cahm, pp 77–93

    Google Scholar 

  11. Zavarzin GA (1993) Epicontinental soda lake are probable relict biotopes of terrestrial biota formation. Microbiology RU 62:473–479

    Google Scholar 

  12. Zavarzin GA (2005) Recent microbiology and Precambrian paleontology. In: Hoover RB, Rosanov AY, Paepe R (eds) Perspectives in astrobiology. NATO science series. I: life and behavioural sciences, vol 366. IOS Press, Amsterdam, pp 201–216

    Google Scholar 

  13. Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14:2496–2522

    Article  CAS  Google Scholar 

  14. Barnes I, Lamarche VC, Himmelberg G (1967) Geochemical evidence of present-day serpentinization. Science 156:830–832

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164

    Article  CAS  PubMed  Google Scholar 

  16. Tiago I, Veríssimo A (2013) Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ Microbiol 15:1687–1706

    Article  CAS  PubMed  Google Scholar 

  17. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woycheese KM, Meyer-Dombard DR, Cardace D, Argayosa AM, Arcilla CA (2015) Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol 6:44

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quéméneur M, Palvadeau A, Postec A, Monnin C, Chavagnac V, Ollivier B, Erauso G (2015) Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy). Environ Sci Pollut Res 22:13613–13624

    Article  CAS  Google Scholar 

  20. Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton AS (2017) Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol 8:56

    Article  PubMed  PubMed Central  Google Scholar 

  21. Neubeck A, Sun L, Müller B, Ivarsson M, Hosgörmez H, Özcan D, Broman C, Schnürer A (2017) Microbial community structure of a serpentine-hosted abiotic gas seepage at the Chimaera ophiolite, Turkey. Appl Environ Microbiol 83:e03430–e03416

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO (2017) Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol 8:916

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suzuki S, Ishii S, Wu A, Cheung A, Tenney A, Wanger G, Wanger G, Gijs Kuenen J, Nealson KH (2013) Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci U S A 110:15336–15341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kelley DS et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  25. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci U S A 107:1612–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Proskurowski G et al (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607

    Article  CAS  PubMed  Google Scholar 

  28. Postec A, Quéméneur M, Bes M, Mei N, Benaïssa F, Payri C, Pelletier B, Monnin C, Guentas-Dombrowsky L, Ollivier B, Gérard E, Pisapia C, Gérard M, Ménez B, Erauso G (2015) Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. Front Microbiol 6:857

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frouin E, Bes M, Ollivier B, Quéméneur M, Postec A, Debroas D, Armougom F, Erauso G (2017) Diversity of rare and abundant prokaryotic phylotypes in the Prony Hydrothermal Field and comparison with other serpentinite-hosted ecosystems. Front Microbiol 9:102

    Article  Google Scholar 

  30. Bes M, Merrouch M, Joseph M, Quéméneur M, Payri C, Pelletier B, Ollivier B, Fardeau M-L, Erauso G, Postec A (2015) Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia). Int J Syst Evol Microbiol 65:2574–2580

    Article  CAS  PubMed  Google Scholar 

  31. Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, Fardeau M-L, Ollivier B (2015) Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony Hydrothermal Field, New Caledonia. Extremophiles 19:183–188

    Article  CAS  PubMed  Google Scholar 

  32. Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C, Ollivier B, Quéméneur M (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony Hydrothermal Field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A, Sorokin DY, Tenney A, Meng XY, Morrill PL, Kamagata Y, Muyzer G, Nealson KH (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 5:3900

    Article  CAS  PubMed  Google Scholar 

  34. Tiago I, Mendes V, Pires C, Morais PV, Veríssimo A (2006) Chimaereicella alkaliphila gen. nov., sp. nov., a gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29:100–108

    Article  PubMed  Google Scholar 

  35. Schulte M, Blake D, Hoehler T, McCollom T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376

    Article  CAS  PubMed  Google Scholar 

  36. Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371

    Article  CAS  PubMed  Google Scholar 

  37. Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc Lond Ser B Biol Sci 366:2857–2869

    Article  CAS  Google Scholar 

  38. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  39. Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102

    Article  CAS  PubMed  Google Scholar 

  40. Kim Y-G, Choi DH, Hyun S, Cho BC (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413

    Article  CAS  PubMed  Google Scholar 

  41. Yu C, Yu S, Zhang Z, Li Z, Zhang X-H (2014) Oceanobacillus pacificus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 64:1278–1283

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297

    Article  CAS  PubMed  Google Scholar 

  43. Ishikawa M, Tanasupawat S, Nakajima K, Kanamori H, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2009) Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. Int J Syst Evol Microbiol 59:1215–1226

    Article  CAS  PubMed  Google Scholar 

  44. Ishikawa M, Nakajima K, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2011) Alkalibacterium subtropicum sp. nov., a slightly halophilic and alkaliphilic marine lactic acid bacterium isolated from decaying marine algae. Int J Syst Evol Microbiol 61:2996–3002

    Article  CAS  PubMed  Google Scholar 

  45. Kurata A, Miyazaki M, Kobayashi T, Nogi Y, Horikoshi K (2007) Alkalimonas collagenimarina sp. nov., a psychrotolerant, obligate alkaliphile isolated from deep-sea sediment. Int J Syst Evol Microbiol 57:1549–1553

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Wang J, Song F, Fang C, Xin Y, Zhang Y (2011) Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. Int J Syst Evol Microbiol 61:1078–1083

    Article  CAS  PubMed  Google Scholar 

  47. Wu Y-H, Shen Y-Q, Xu X-W, Wang C-S, Oren A, Wu M (2009) Pseudidiomarina donghaiensis sp. nov. and Pseudidiomarina maritima sp. nov., isolated from the East China Sea. Int J Syst Evol Microbiol 59:1321–1325

    Article  CAS  PubMed  Google Scholar 

  48. Hu ZY, Li Y (2007) Pseudidiomarina sediminum sp. nov., a marine bacterium isolated from coastal sediments of Luoyuan Bay in China. Int J Syst Evol Microbiol 57:2572–2577

    Article  CAS  PubMed  Google Scholar 

  49. Huang SP, Chang HY, Chen JS, Jean WD, Shieh WY (2012) Aliidiomarina taiwanensis gen. nov., sp. nov., isolated from shallow coastal water. Int J Syst Evol Microbiol 62:155–161

    Article  CAS  PubMed  Google Scholar 

  50. Srinivas TNR, Nupur, Anil Kumar P (2012) Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie Van Leeuwenhoek 101:761–768

    Article  CAS  PubMed  Google Scholar 

  51. Amoozegar MA, Shahinpei A, Abolhassan S, Fazeli S, Schumann P, Spröer C, Ventosa A (2016) Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 66:2099–2105

    Article  CAS  Google Scholar 

  52. Shahinpei A, Amoozegar MA, Abolhassan S, Fazeli S, Schumann P, Spröer C, Ventosa A (2017) Aliidiomarina sedimenti sp. nov., a haloalkaliphilic bacterium in the family Idiomarinaceae. Int J Syst Evol Microbiol 67:2087–2092

    Article  CAS  PubMed  Google Scholar 

  53. Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A (2014) Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family ‘Saccharospirillaceae’. Int J Syst Evol Microbiol 64:3610–3615

    Article  PubMed  CAS  Google Scholar 

  54. Zhao J-X, Liu Q-Q, Zhou Y-X, Chen G-J, Du Z-J (2015) Alkalimarinus sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65:3511–3516

    Article  CAS  PubMed  Google Scholar 

  55. Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458

    Article  CAS  PubMed  Google Scholar 

  56. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  57. Zhang Y-G, Lu X-H, Ding Y-B, Wang S-J, Zhou X-K, Wang H-F, Guo J-W, Liu Y-H, Duan Y-Q, Li W-J (2016) Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 66:4071–4076

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y-G, Lu X-H, Ding Y-B, Zhou X-K, Li L, Guo J-W, Wang H-F, Duan Y-Q, Li W-J (2016) Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 66:2058–2063

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y-G, Wang H-F, Yang L-L, Zhou X-K, Zhi X-Y, Duan Y-Q, Xiao M, Zhang Y-M, Li W-J (2016) Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov. Int J Syst Evol Microbiol 66:283–289

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y-G, Zhou X-K, Guo J-W, Xiao M, Wang H-F, Wang Y, Bobodzhanova K, Li W-J (2018) Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil. Int J Syst Evol Microbiol 68:558–563

    Article  CAS  PubMed  Google Scholar 

  61. Olivera N, Siňeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from Atriplex lampa rhizosphere, Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447

    Article  CAS  PubMed  Google Scholar 

  62. Borsodi AK, Tóth E, Aszalós JM, Bárány A, Schumann P, Spröer C, Kovács AL, Márialigeti K, Szili-Kovács T (2017) Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil. Int J Syst Evol Microbiol 67:3490–3495

    Article  CAS  PubMed  Google Scholar 

  63. Keshri J, Mody K, Jha B (2013) Bacterial community structure in a semi-arid haloalkaline soil using culture independent method. Geomicrobiol J 30:517–529

    Article  CAS  Google Scholar 

  64. Sorokin ID, Zadorina EV, Kravchenko IK, Boulygina ES, Tourova TP, Sorokin DY (2008) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827

    Article  CAS  PubMed  Google Scholar 

  65. Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES, Sorokin DY (2008) Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464

    Article  CAS  PubMed  Google Scholar 

  66. Sorokin DY, Kolganova TV, Khijniak TV, Jones BE, Kublanov IV (2017) Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils. PeerJ 5:e3796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Srinivas A, Divyasree B, Sasikala C, Tushar L, Bharti D, Ramana CV (2016) Description of Jeotgalibacillus alkaliphilus sp. nov., isolated from a solar salt pan, and Jeotgalibacillus terrae sp. nov., a name to replace ‘Jeotgalibacillus soli’ Chen et al. 2010. Int J Syst Evol Microbiol 66:5167–5172

    Article  CAS  PubMed  Google Scholar 

  68. Pérez-Davó A, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2014) Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. Int J Syst Evol Microbiol 64:2066–2071

    Article  PubMed  CAS  Google Scholar 

  69. Borsodi AK, Szili-Kovács T, Schumann P, Spröer C, Márialigeti K, Tóth E (2017) Nesterenkonia pannonica sp. nov., a novel alkaliphilic and moderately halophilic actinobacterium. Int J Syst Evol Microbiol 67:4116–4120

    Article  CAS  PubMed  Google Scholar 

  70. Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, Szili-Kovács T, Tóth E (2017) Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 67:5159–5164

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt M, Priemé A, Stougaard P (2006) High microbial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 10:551–562

    Article  CAS  PubMed  Google Scholar 

  72. Trampe E, Castenholz RW, Larsen JE, Kühl M (2017) Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland). Environ Microbiol 19:4754–4770

    Article  CAS  PubMed  Google Scholar 

  73. Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Factories 13:72

    Article  CAS  Google Scholar 

  74. Schmidt M, Prieme A, Stougaard P (2006) Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland. Int J Syst Evol Microbiol 56:2887–2892

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt M, Priemé A, Stougaard P (2007) Arsukibacterium ikkense gen. nov., sp. nov, a novel alkaliphilic, enzyme-producing γ-Proteobacterium isolated from a cold and alkaline environment in Greenland. Syst Appl Microbiol 30:197–201

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt M, Priemé A, Johansen A, Stougaard P (2012) Alkalilactibacillus ikkensis, gen. nov., sp. nov., a novel enzyme-producing bacterium from a cold and alkaline environment in Greenland. Extremophiles 16:297–305

    Article  CAS  Google Scholar 

  77. Mono Basin Ecosystem Study Committee, Board on Environmental Studies and Toxicology, Commission on Physical Sciences, Mathematics, and Resources, National Research Council (1987) The Mono Basin ecosystem: effects of changing lake level. National Academy Press, Washington

    Google Scholar 

  78. Reimer A, Landmann G, Kempe S (2009) Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat Geochem 15:195–222

    Article  CAS  Google Scholar 

  79. Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water 44:511–517

    Article  CAS  PubMed  Google Scholar 

  80. Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M (2017) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie Van Leeuwenhoek 110:945–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230

    Article  CAS  Google Scholar 

  82. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrikson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South Africa gold mine. Int J Syst Evol Microbiol 51:1245–1256

    Article  CAS  PubMed  Google Scholar 

  83. Ren L, Han Y, Yang S, Tan X, Wang J, Zhao X, Fan J, Dong T, Zhou Z (2014) Isolation, identification and primary application of bacteria from putrid alkaline silica sol. Front Chem Sci Eng 8:330–339

    Article  CAS  Google Scholar 

  84. Aino K, Hirota K, Okamoto T, Tu Z, Matsuyama H, Yumoto I (2018) Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments. Front Microbiol 9:2196

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yumoto I, Hirota K, Nodasak Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383

    Article  CAS  PubMed  Google Scholar 

  86. Nishita M, Hirota K, Matsuyama H, Yumoto I (2017) Development of media to accelerate the isolation of indigo-reducing bacteria, which are difficult to isolate using conventional media. World J Microbiol Biotechnol 33:133

    Article  PubMed  CAS  Google Scholar 

  87. Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183

    Article  CAS  PubMed  Google Scholar 

  88. Okamoto T, Aino K, Narihiro T, Matsuyama H, Yumoto I (2017) Analysis of microbiota involved in the aged natural fermentation of indigo. World J Microbiol Biotechnol 33:70

    Article  PubMed  CAS  Google Scholar 

  89. Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol 129:2037–2042

    CAS  Google Scholar 

  90. Kulshreshtha NM, Kumar R, Begum Z, Shivaji S, Kumar A (2013) Exiguobacterium alkaliphilum sp. nov. isolated from alkaline wastewater drained sludge of a beverage factory. Int J Syst Evol Microbiol 63:4374–4379

    Article  CAS  Google Scholar 

  91. Ntougias S, Russell NJ (2001) Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 51:1161–1170

    Article  CAS  PubMed  Google Scholar 

  92. Ntougias S, Zervakis GI, Ehaliotis C, Kavroulakis N, Papadopoulou KK (2006) Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res Microbiol 157:376–385

    Article  CAS  PubMed  Google Scholar 

  93. Tang X, Zhai L, Lin Y, Yao S, Wang L, Ge Y, Liu Y, Zhang X, Zhang T, Zhang L, Liu J, Cheng C (2017) Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 67:1546–1550

    Article  PubMed  Google Scholar 

  94. Rijkenberg MJA, Kort R, Hellingwerf KJ (2001) Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175:369–375

    Article  CAS  PubMed  Google Scholar 

  95. Vaz MGMV, Genuário DB, Andreote APD, Malone CFS, Sant’Anna CL, Barbiero L, Fiore MF (2015) Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline–alkaline lakes. Int J Syst Evol Microbiol 65:298–308

    Article  CAS  PubMed  Google Scholar 

  96. Chun S-J, Cui Y, Ko S-R, Lee H-G, Oh H-M, Ahn C-Y (2017) Silanimonas algicola sp. nov., isolated from laboratory culture of a bloom-forming cyanobacterium, Microcystis. Int J Syst Evol Microbiol 67:3274–3278

    Article  CAS  PubMed  Google Scholar 

  97. Wang G, Wu H, Zhang X, Zhang H, Yang X, Tian X, Li J, Xiang W, Li X (2013) Aliidiomarina sanyensis sp. nov., a hexabromocyclododecane assimilating bacterium from the pool of Spirulina platensis cultivation, Sanya, China. Antonie Van Leeuwenhoek 104:309–314

    Article  CAS  PubMed  Google Scholar 

  98. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167

    Article  CAS  Google Scholar 

  99. Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov. Int J Syst Bacteriol 43:450–460

    Article  Google Scholar 

  100. Li Y, Engle M, Mandelco L, Wiegel J (1994) Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44:111–118

    Article  CAS  PubMed  Google Scholar 

  101. Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33

    Article  CAS  PubMed  Google Scholar 

  102. Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489

    Article  CAS  PubMed  Google Scholar 

  103. Echigo A, Minegishi H, Shimane Y, Kamekura M, Usami R (2012) Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 62:289–294

    Article  CAS  PubMed  Google Scholar 

  104. Usami R, Echigo A, Fukushima T, Mizuki T, Yoshida Y, Kamekura M (2007) Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. Int J Syst Evol Microbiol 57:770–774

    Article  CAS  PubMed  Google Scholar 

  105. Inan K, Kacagan M, Ozer A, Belduz AO, Canakci S (2015) Algoriphagus trabzonensis sp. nov., isolated from freshwater, and emended description of Algoriphagus alkaliphilus. Int J Syst Evol Microbiol 65:2234–2240

    Article  CAS  PubMed  Google Scholar 

  106. Denizci AA, Kazan D, Erarslan A (2010) Bacillus marmarensis sp. nov., an alkaliphilic, protease- producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594

    Article  CAS  PubMed  Google Scholar 

  107. Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    Article  CAS  PubMed  Google Scholar 

  108. Yumoto M, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017

    Article  CAS  PubMed  Google Scholar 

  109. Sravanthi T, Tushar L, Sasikala C, Ramana CV (2015) Spirochaeta odontotermitis sp. nov., an obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite Odontotermes obesus (Rambur) gut. Int J Syst Evol Microbiol 65:4589–4594

    Article  CAS  PubMed  Google Scholar 

  110. Sravanthi T, Tushar L, Sasikala C, Ramana CV (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66:1612–1619

    Article  CAS  PubMed  Google Scholar 

  111. Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M (2010) Bacillus trypoxylicola sp. nov., xylanase-producing, alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66

    Article  CAS  PubMed  Google Scholar 

  112. Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K (2007) Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett Appl Microbiol 44:308–313

    Article  CAS  PubMed  Google Scholar 

  113. Kempe S, Kaźmierczak J (2003) Modern soda lakes: model environments for an early alkaline ocean. In: Müller T, Müller H (eds) Modelling in natural sciences; design, validation and case studies. Springer, Berlin, pp 309–322

    Google Scholar 

  114. Bondarenko SA, Ianutsevich EA, Danilova OA, Grum-Grzhimaylo AA, Kotlova ER, Kamzolkina OV, Bilanenko EN, Tereshina VM (2017) Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles 21:743–754

    Article  CAS  PubMed  Google Scholar 

  115. Schagerl M (ed) (2016) Soda lakes of East Africa. Springer, Cham

    Google Scholar 

  116. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoş N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769

    Article  PubMed  Google Scholar 

  117. Steiman R, Ford L, Ducros V, Lafond JL, Guiraud P (2004) First survey of fungi in hypersaline soil and water of Mono Lake area (California). Antonie Van Leeuwenhoek 85:69–83

    Article  CAS  PubMed  Google Scholar 

  118. Golubic S, Buch B (1978) Diatoms in Lake Van Sediments. In: Degens ET, Kurtman F (eds) Geology of Lake Van. Miner Res Explor Inst Turkey, vol 169. Ankara, pp 111–114

    Google Scholar 

  119. Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:441

    Article  PubMed  PubMed Central  Google Scholar 

  120. Roesler CS, Culbertson CW, Etheridge SM, Goericke R, Kiene RP, Miller LG, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol Oceanogr 47:440–452

    Article  CAS  Google Scholar 

  121. Di Menna ME (1959) Some physiological characters of yeasts from soils and allied habitats. J Gen Microbiol 20:13–23

    Article  Google Scholar 

  122. Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience 36:247–256

    Article  Google Scholar 

  123. Okada G, Niimura Y, Sakata T, Uchimura T, Ohara N, Suzuki H, Kozaki M (1993) Acremonium alcalophilum, a new alkalophilic cellulolytic hyphomycete. Trans Mycol Soc Jpn 34:171–185

    Google Scholar 

  124. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74

    Article  Google Scholar 

  125. Aono R (1990) Taxonomic distribution of alkali-tolerant yeasts. Syst Appl Microbiol 13:394–397

    Article  Google Scholar 

  126. Lisichkina GA, Bab’eva IP, Sorokin DY (1993) Alkalitolerant yeasts from natural biotopes. Microbiology RU 72:618–620

    Google Scholar 

  127. Kladwang W, Bhumirattana A, Hywel-Jones N (2003) Alkaline-tolerant fungi from Thailand. Fungal Divers 13:69–83

    Google Scholar 

  128. Eliades LA, Cabello MN, Voget CE (2006) Contribution to the study of alkalophilic and alkali-tolerant Ascomycota from Argentina. Darwiniana 44:64–73

    Google Scholar 

  129. Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkaliphilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 39:293–298

    Article  CAS  Google Scholar 

  130. Grant WD (2006) Cultivation of aerobic alkaliphiles. In: Rainey FA, Oren A (eds) Methods in microbiology. Extremophiles, vol 35. Elsevier, New York, pp 439–449

    Google Scholar 

  131. Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E, Kuznetsov B (2013) Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 17:747–756

    Article  CAS  PubMed  Google Scholar 

  132. Datta S, Mody K, Gopalsamy G, Jha B (2011) Novel application of k-carrageenan: as a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydr Polym 85:465–468

    Article  CAS  Google Scholar 

  133. Kevbrin VV, Boltyanskaya Y, Garnova E, Wiegel J (2008) Anaerobranca zavarzinii sp. nov., an anaerobic, alkalithermophilic bacterium isolated from Kamchatka thermal fields. Int J Syst Evol Microbiol 58:1486–1491

    Article  CAS  PubMed  Google Scholar 

  134. Boltyanskaya Y, Detkova E, Pimenov N, Kevbrin V (2018) Proteinivorax hydrogeniformans sp. nov., an anaerobic, haloalkaliphilic bacterium fermenting proteinaceous compounds with high hydrogen production. Antonie Van Leeuwenhoek 111:275–284

    Article  CAS  PubMed  Google Scholar 

  135. McMillan DGG, Keis S, Berney M, Cook GM (2009) Nonfermentative thermoalkaliphilic growth is restricted to alkaline environments. Appl Environ Microbiol 75:7649–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kevbrin V, Lysenko AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinae isolated from lake Magadi. Microbiology RU 66:261–266

    CAS  Google Scholar 

  137. Krieg NR, Padgett PJ (2011) Phenotypic and physiological characterization methods. In: Rainey F, Oren A (eds) Methods in microbiology. Taxonomy of prokaryotes, vol 38. Academic, Cambridge, pp 15–60

    Chapter  Google Scholar 

  138. Sorokin DY (2005) Is there a limit for high-pH life? Int J Syst Evol Microbiol 55:1405–1406

    Article  PubMed  Google Scholar 

  139. Mesbah NM, Wiegel J (2006) Isolation, cultivation and characterization of alkalithermophiles. In: Rainey FA, Oren A (eds) Methods in microbiology. Extremophiles, vol 35. Elsevier, New York, pp 451–468

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant No. 18-04-00236 from the Russian Foundation for Basic Research “Degradation of nitrogen-containing components of a bacterial cell by alkaliphilic microorganisms of soda lakes” and by Basic Research Program No 17, Subprogram 2 of the Russian Academy of Sciences “Evolution of organic world and planetary processes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Kevbrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kevbrin, V.V. (2019). Isolation and Cultivation of Alkaliphiles. In: Mamo, G., Mattiasson, B. (eds) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 172. Springer, Cham. https://doi.org/10.1007/10_2018_84

Download citation

Publish with us

Policies and ethics