Skip to main content

Rigid-Docking Approaches to Explore Protein–Protein Interaction Space

  • Chapter
  • First Online:
Network Biology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 160))

Abstract

Protein–protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein–protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein–protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein–protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein–protein interactions that form protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. doi:10.1093/nar/gku989

    Article  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  3. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O’Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478. doi:10.1093/nar/gku1204

    Article  Google Scholar 

  4. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451. doi:10.1093/nar/gkh086

    Article  CAS  Google Scholar 

  5. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database – 2009 update. Nucleic Acids Res 37(Database issue):D767–D772. doi:10.1093/nar/gkn892

    Article  CAS  Google Scholar 

  6. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2014) The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363. doi:10.1093/nar/gkt1115

    Google Scholar 

  7. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861. doi:10.1093/nar/gkr930

    Google Scholar 

  8. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18:1257–1261. doi:10.1038/82360

    Article  CAS  Google Scholar 

  9. Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120. doi:10.1186/gb-2006-7-11-120

    Article  CAS  Google Scholar 

  10. Hakes L, Pinney JW, Robertson DL, Lovell SC (2008) Protein-protein interaction networks and biology – what’s the connection? Nat Biotechnol 26:69–72. doi:10.1038/nbt0108-69

    Article  CAS  Google Scholar 

  11. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42. doi:10.1038/35075138

    Article  CAS  Google Scholar 

  12. Franzosa EA, Xia Y (2011) Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108:10538–10543. doi:10.1073/pnas.1101440108

    Article  CAS  Google Scholar 

  13. Rachita HR, Nagarajaram HA (2014) Viral proteins that bridge unconnected proteins and components in the human PPI network. Mol Biosyst 10:2448–2458. doi:10.1039/c4mb00219a

    Article  CAS  Google Scholar 

  14. Rao VS, Srinivas K, Sujini GN, Kumar GN (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:147648. doi:10.1155/2014/147648

    Article  CAS  Google Scholar 

  15. Hue M, Riffle M, Vert JP, Noble WS (2010) Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 11:144. doi:10.1186/1471-2105-11-144

    Google Scholar 

  16. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–W336. doi:10.1093/nar/gki585

    Article  CAS  Google Scholar 

  17. Zhang QC, Petrey D, Garzón JI, Deng L, Honig B (2013) PrePPI: a structure-informed database of protein-protein interactions. Nucleic Acids Res 41(Database issue):D828–D833. doi:10.1093/nar/gks1231

    Article  CAS  Google Scholar 

  18. Matsuzaki Y, Matsuzaki Y, Sato T, Akiyama Y (2009) In silico screening of protein-protein interactions with all-to-all rigid docking and clustering: an application to pathway analysis. J Bioinform Comput Biol 7:991–1012

    Article  CAS  Google Scholar 

  19. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A (2011) Towards the prediction of protein interaction partners using physical docking. Mol Syst Biol 7:469. doi:10.1038/msb.2011.3

    Article  Google Scholar 

  20. Zhang C, Tang B, Wang Q, Lai L (2014) Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening. Proteins 82:2472–2482. doi:10.1002/prot.24611

    Article  CAS  Google Scholar 

  21. Martin J, Lavery R (2012) Arbitrary protein-protein docking targets biologically relevant interfaces. BMC Biophys 5:7. doi:10.1186/2046-1682-5-7

    Article  CAS  Google Scholar 

  22. Hwang H, Vreven T, Weng Z (2014) Binding interface prediction by combining protein-protein docking results. Proteins 82:57–66. doi:10.1002/prot.24354

    Article  CAS  Google Scholar 

  23. Torchala M, Moal IH, Chaleil RA, Agius R, Bates PA (2013) A Markov-chain model description of binding funnels to enhance the ranking of docked solutions. Proteins 81:2143–2149. doi:10.1002/prot.24369

    Article  CAS  Google Scholar 

  24. Kastritis PL, Bonvin AM (2010) Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J Proteome Res 9:2216–2225. doi:10.1021/pr9009854

    Article  CAS  Google Scholar 

  25. Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-García B, Bates PA, Fernandez-Recio J, Bonvin AM, Weng Z (2015) Updates to the integrated protein-protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J Mol Biol 427:3031–3041. doi:10.1016/j.jmb.2015.07.016

    Article  CAS  Google Scholar 

  26. Yugandhar K, Gromiha MM (2014) Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics 30:3583–3589. doi:10.1093/bioinformatics/btu580

    Article  CAS  Google Scholar 

  27. Mosca R, Pons C, Fernández-recio J, Aloy P (2009) Pushing structural information into the yeast interactome by high-throughput protein docking experiments. PLoS Comput Biol 5:e1000490. doi:10.1371/journal.pcbi.1000490

    Article  CAS  Google Scholar 

  28. Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y (2013) MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol Med 8:18. doi:10.1186/1751-0473-8-18

  29. Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014) MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers. Bioinformatics 30:3281–3283. doi:10.1093/bioinformatics/btu532

    Article  CAS  Google Scholar 

  30. Aloy P, Russell RB (2003) InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19:161–162. doi:10.1093/bioinformatics/19.1.161

    Article  CAS  Google Scholar 

  31. Cockell SJ, Oliva B, Jackson RM (2007) Structure-based evaluation of in silico predictions of protein protein interactions using comparative docking. Bioinformatics 23:573–581. doi:10.1093/bioinformatics/btl661

    Article  CAS  Google Scholar 

  32. Fukuhara N, Kawabata T (2008) HOMCOS: a server to predict interacting protein pairs and interacting sites by homology modeling of complex structures. Nucleic Acids Res 36:W185–W189. doi:10.1093/nar/gkn218

    Article  CAS  Google Scholar 

  33. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10:47–53. doi:10.1038/nmeth.2289

    Article  CAS  Google Scholar 

  34. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6:1341–1354. doi:10.1038/nprot.2011.367

    Article  CAS  Google Scholar 

  35. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res 42:W285–W289. doi:10.1093/nar/gku397

    Article  CAS  Google Scholar 

  36. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87. doi:10.1002/prot.10389

    Article  CAS  Google Scholar 

  37. Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) Integrating statistical pair potentials into protein complex prediction. Proteins 69:511–520. doi:10.1002/prot.21502

    Article  CAS  Google Scholar 

  38. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6:e24657. doi:10.1371/journal.pone.0024657

    Article  CAS  Google Scholar 

  39. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773. doi:10.1093/bioinformatics/btu097

    Article  CAS  Google Scholar 

  40. Ohue M, Matsuzaki Y, Ishida T, Akiyama Y (2012) Improvement of the protein protein docking prediction by introducing a simple hydrophobic interaction model: an application to interaction pathway analysis. Lect Notes Comput Sci 7632:178–187. doi:10.1007/978-3-642-34123-6_16

    Article  CAS  Google Scholar 

  41. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y (2014) MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Protein Pept Lett 21:766–778. doi:10.2174/09298665113209990050

    Article  CAS  Google Scholar 

  42. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2003) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50. doi:10.1093/bioinformatics/btg371

    Article  CAS  Google Scholar 

  43. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406. doi:10.1002/prot.21117

    Article  CAS  Google Scholar 

  44. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S (2013) How good is automated protein docking? Proteins 81:2159–2166. doi:10.1002/prot.24403

    Article  CAS  Google Scholar 

  45. Gabb HA, Jackson RM, Sternberg MJE (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120. doi:10.1006/jmbi.1997.1203

    Article  CAS  Google Scholar 

  46. Zhang C, Lai L (2011) SDOCK: a global protein-protein docking program using stepwise force-field potentials. J Comput Chem 32:2598–2612. doi:10.1002/jcc.21839

    Article  CAS  Google Scholar 

  47. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60:296–301. doi:10.1002/prot.20573

    Article  CAS  Google Scholar 

  48. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. doi:10.1093/nar/gkl206

    Article  CAS  Google Scholar 

  49. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199

    Google Scholar 

  50. Ben-Zeev E, Eisenstein M (2003) Weighted geometric docking: incorporating external information in the rotation-translation scan. Proteins 52:24–27. doi:10.1002/prot.10391

    Article  CAS  Google Scholar 

  51. Bajaj C, Chowdhury R, Siddavanahalli V (2011) F2Dock: fast Fourier protein-protein docking. IEEE/ACM Trans Comput Biol Bioinform 8:45–58. doi:10.1109/TCBB.2009.57

    Article  CAS  Google Scholar 

  52. Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, Tsigelny I, Ten Eyck LF (2001) Protein docking using continuum electrostatics and geometric fit. Protein Eng Des Sel 14:105–113. doi:10.1093/protein/14.2.105

    Article  CAS  Google Scholar 

  53. Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF (2013) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34:1743–1758. doi:10.1002/jcc.23304

    Article  CAS  Google Scholar 

  54. Li L, Guo D, Huang Y, Liu S, Xiao Y (2011) ASPDock: protein-protein docking algorithm using atomic solvation parameters model. BMC Bioinformatics 12:36. doi:10.1186/1471-2105-12-36

    Article  CAS  Google Scholar 

  55. Ritchie DW, Kemp GJL (2000) Protein docking using spherical polar Fourier correlations. Proteins Struct Funct Genet 39:178–194. doi:10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6

    Article  CAS  Google Scholar 

  56. Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405. doi:10.1093/bioinformatics/btq444

    Article  CAS  Google Scholar 

  57. Macindoe G, Mavridis L, Venkatraman V, Devignes M-D, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449. doi:10.1093/nar/gkq311

    Article  CAS  Google Scholar 

  58. Garzon JI, Lopez-Blanco JR, Pons C, Kovacs J, Abagyan R, Fernandez-Recio J, Chacon P (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25:2544–2551. doi:10.1093/bioinformatics/btp447

    Article  CAS  Google Scholar 

  59. Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10:407. doi:10.1186/1471-2105-10-407

    Article  CAS  Google Scholar 

  60. Esquivel-Rodríguez J, Yang YD, Kihara D (2012) Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins Struct Funct Bioinf 80(7):1818–1833. doi:10.1002/prot.24079

    Google Scholar 

  61. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481

    Article  CAS  Google Scholar 

  62. Shentu Z, Al Hasan M, Bystroff C, Zaki MJ (2007) Context shapes: efficient complementary shape matching for protein-protein docking. Proteins 70:1056–1073. doi:10.1002/prot.21600

    Article  CAS  Google Scholar 

  63. Gu S, Koehl P, Hass J, Amenta N (2012) Surface-histogram: a new shape descriptor for protein-protein docking. Proteins 80:221–238. doi:10.1002/prot.23192

    Article  CAS  Google Scholar 

  64. Axenopoulos A, Daras P, Papadopoulos GE, Houstis EN (2013) SP-Dock: protein-protein docking using shape and physicochemical complementarity. IEEE/ACM Trans Comput Biol Bioinf 10:135–150. doi:10.1109/TCBB.2012.149

    Article  CAS  Google Scholar 

  65. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein − protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. doi:10.1021/ja026939x

    Article  CAS  Google Scholar 

  66. de Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897. doi:10.1038/nprot.2010.32

    Article  CAS  Google Scholar 

  67. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299. doi:10.1016/S0022-2836(03)00670-3

    Article  CAS  Google Scholar 

  68. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238. doi:10.1093/nar/gkn216

    Article  CAS  Google Scholar 

  69. Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein–protein docking using computational and NMR ensembles. J Mol Biol 381:1068–1087. doi:10.1016/j.jmb.2008.05.042

    Article  CAS  Google Scholar 

  70. Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R (2013) Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One 8:e63906. doi:10.1371/journal.pone.0063906

    Article  Google Scholar 

  71. Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11:3623–3648. doi:10.3390/ijms11103623

    Article  CAS  Google Scholar 

  72. Torchala M, Moal IH, Chaleil RAG, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29:807–809. doi:10.1093/bioinformatics/btt038

    Article  CAS  Google Scholar 

  73. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78:1503–1519. doi:10.1002/prot.22668

    Article  CAS  Google Scholar 

  74. Venkatraman V, Ritchie DW (2012) Flexible protein docking refinement using pose-dependent normal mode analysis. Proteins 80:2262–2274. doi:10.1002/prot.24115

    Article  CAS  Google Scholar 

  75. Li L, Chen R, Weng Z (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins 53:693–707. doi:10.1002/prot.10460

    Article  CAS  Google Scholar 

  76. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69:139–159. doi:10.1002/prot.21495

    Article  CAS  Google Scholar 

  77. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086. doi:10.1002/prot

    Article  CAS  Google Scholar 

  78. Pierce B, Weng Z (2008) A combination of rescoring and refinement significantly improves protein docking performance. Proteins 72:270–279. doi:10.1002/prot.21920

    Article  CAS  Google Scholar 

  79. Pons C, Talavera D, de la Cruz X, Orozco M, Fernandez-Recio J (2011) Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): a new efficient potential for protein-protein docking. J Chem Inf Model 51:370–377. doi:10.1021/ci100353e

    Article  CAS  Google Scholar 

  80. Khashan R, Zheng W, Tropsha A (2012) Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues. Proteins Struct Funct Bioinf 80:2207–2217. doi:10.1002/prot.24110

    Article  CAS  Google Scholar 

  81. Cheng TM-K, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins Struct Funct Bioinf 68:503–515. doi:10.1002/prot.21419

    Article  CAS  Google Scholar 

  82. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29:1698–1699. doi:10.1093/bioinformatics/btt262

    Article  CAS  Google Scholar 

  83. Chuang G-Y, Kozakov D, Brenke R, Comeau SR, Vajda S (2008) DARS (decoys as the reference state) potentials for protein-protein docking. Biophys J 95:4217–4227. doi:10.1529/biophysj.108.135814

    Article  CAS  Google Scholar 

  84. Ravikant DVS, Elber R (2010) PIE-efficient filters and coarse grained potentials for unbound protein-protein docking. Proteins 78:400–419. doi:10.1002/prot.22550

    Article  CAS  Google Scholar 

  85. Viswanath S, Ravikant DVS, Elber R (2013) Improving ranking of models for protein complexes with side chain modeling and atomic potentials. Proteins 81:592–606. doi:10.1002/prot.24214

    Article  CAS  Google Scholar 

  86. Chowdhury R, Rasheed M, Keidel D, Moussalem M, Olson A, Sanner M, Bajaj C (2013) Protein-protein docking with F2Dock 2.0 and GB-rerank. PLoS One 8:e51307. doi:10.1371/journal.pone.0051307

    Google Scholar 

  87. Sarti E, Granata D, Seno F, Trovato A, Laio A (2015) Native fold and docking pose discrimination by the same residue-based scoring function. Proteins 83:621–630. doi:10.1002/prot.24764

    Article  CAS  Google Scholar 

  88. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi:10.1016/j.jmb.2007.05.022

    Article  CAS  Google Scholar 

  89. Omori S, Kitao A (2013) CyClus: a fast, comprehensive cylindrical interface approximation clustering/reranking method for rigid-body protein-protein docking decoys. Proteins 81:1005–1016. doi:10.1002/prot.2425

    Article  CAS  Google Scholar 

  90. Oliva R, Vangone A, Cavallo L (2013) Ranking multiple docking solutions based on the conservation of inter-residue contacts. Proteins 81:1571–1584. doi:10.1002/prot.24314

    Article  CAS  Google Scholar 

  91. Chermak E, Petta A, Serra L, Vangone A, Scarano V, Cavallo L, Oliva R (2015) CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Bioinformatics 31:1481–1483. doi:10.1093/bioinformatics/btu837

    Article  CAS  Google Scholar 

  92. Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y (2013) Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. PLoS One 8:e69365. doi:10.1371/journal.pone.0069365

    Article  CAS  Google Scholar 

  93. Xue LC, Jordan RA, Yasser E-M, Dobbs D, Honavar V (2014) DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction. Proteins 82:250–267. doi:10.1002/prot.24370

    Google Scholar 

  94. Moal IH, Jimenez-Garcia B, Fernandez-Recio J (2015) CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics 31:123–125. doi:10.1093/bioinformatics/btu594

    Article  CAS  Google Scholar 

  95. Eisenstein M, Katchalski-Katzir E (2004) On proteins, grids, correlations, and docking. C R Biol 327:409–420. doi:10.1016/j.crvi.2004.03.006

    Article  CAS  Google Scholar 

  96. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15. doi:10.2174/138920308783565741

    Article  CAS  Google Scholar 

  97. Janin J (2010) Protein–protein docking tested in blind predictions: the CAPRI experiment. Mol Biosyst 6:2351. doi:10.1039/c005060c

    Article  CAS  Google Scholar 

  98. Vakser IA (2013) Low-resolution structural modeling of protein interactome. Curr Opin Struct Biol 23:198–205. doi:10.1016/j.sbi.2012.12.003

    Article  CAS  Google Scholar 

  99. Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81:1874–1884. doi:10.1002/prot.24343

    Article  CAS  Google Scholar 

  100. Huang S-Y (2014) Search strategies and evaluation in protein–protein docking: principles, advances and challenges. Drug Discov Today 19:1081–1096. doi:10.1016/j.drudis.2014.02.005

    Article  CAS  Google Scholar 

  101. Moal IH, Moretti R, Baker D, Fernández-Recio J (2013) Scoring functions for protein-protein interactions. Curr Opin Struct Biol 23:862–867. doi:10.1016/j.sbi.2013.06.017

    Article  CAS  Google Scholar 

  102. Moal IH, Torchala M, Bates PA, Fernández-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286. doi:10.1186/1471-2105-14-286

    Article  CAS  Google Scholar 

  103. Szilagyi A, Zhang Y (2014) Template-based structure modeling of protein–protein interactions. Curr Opin Struct Biol 24:10–23. doi:10.1016/j.sbi.2013.11.005

    Article  CAS  Google Scholar 

  104. Vreven T, Hwang H, Pierce BG, Weng Z (2014) Evaluating template-based and template-free protein-protein complex structure prediction. Brief Bioinform 15:169–176. doi:10.1093/bib/bbt047

    Article  CAS  Google Scholar 

  105. Kundrotas PJ, Zhu Z, Janin J, Vakser IA (2012) Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A 109:9438–9441. doi:10.1073/pnas.1200678109

    Article  CAS  Google Scholar 

  106. Negroni J, Mosca R, Aloy P (2014) Assessing the applicability of template-based protein docking in the twilight zone. Structure 22:1356–1362. doi:10.1016/j.str.2014.07.009

    Article  CAS  Google Scholar 

  107. Scior T, Bender A, Tresadern G, Medina-Franco JL, Martínez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881. doi:10.1021/ci200528d

    Article  CAS  Google Scholar 

  108. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. doi:10.1038/nrd1549

    Article  CAS  Google Scholar 

  109. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502. doi:10.1016/j.cbpa.2007.08.033

    Article  CAS  Google Scholar 

  110. Yoshikawa T, Tsukamoto K, Hourai Y, Fukui K (2008) Parameter tuning and evaluation of an affinity prediction using protein-protein docking. In: Proc 10th WSEAS Int Conf Math Methods Comput Tech Electr Eng, 312–317

    Google Scholar 

  111. Tsukamoto K, Yoshikawa T, Hourai Y, Fukui K, Akiyama Y (2008) Development of an affinity evaluation and prediction system by using the shape complementarity characteristic between proteins. J Bioinform Comput Biol 6:1133–1156

    Article  CAS  Google Scholar 

  112. Yoshikawa T, Tsukamoto K, Hourai Y, Fukui K (2009) Improving the accuracy of an affinity prediction method by using statistics on shape complementarity between proteins. J Chem Inf Model 49:693–703

    Article  CAS  Google Scholar 

  113. Tsukamoto K, Yoshikawa T, Yokota K, Hourai Y, Fukui K (2009) The development of an affinity evaluation and prediction system by using protein-protein docking simulations and parameter tuning. Adv Appl Bioinform Chem 2:1–15

    CAS  Google Scholar 

  114. Sacquin-Mora S, Carbone A, Lavery R (2008) Identification of protein interaction partners and protein–protein interaction sites. J Mol Biol 382:1276–1289. doi:10.1016/j.jmb.2008.08.002

    Article  CAS  Google Scholar 

  115. Yoshikawa T, Seno S, Takenaka Y, Matsuda H (2010) Improved prediction method for protein interactions using both structural and functional characteristics of proteins. IPSJ Trans Bioinf 3:10–23. doi:10.2197/ipsjtbio.3.10

    Article  Google Scholar 

  116. Wass MN, David A, Sternberg MJE (2011) Challenges for the prediction of macromolecular interactions. Curr Opin Struct Biol 21:382–390. doi:10.1016/j.sbi.2011.03.013

    Article  CAS  Google Scholar 

  117. Ohue M, Matsuzaki Y, Shimoda T, Ishida T, Akiyama Y (2013) Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods. BMC Proc 7:S6. doi:10.1186/1753-6561-7-S7-S6

    Article  Google Scholar 

  118. Matsuzaki Y, Ohue M, Uchikoga N, Akiyama Y (2014) Protein-protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis. Protein Pept Lett 21:790–798

    Article  CAS  Google Scholar 

  119. Lopes A, Sacquin-Mora S, Dimitrova V, Laine E, Ponty Y, Carbone A (2013) Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information. PLoS Comput Biol 9:e1003369. doi:10.1371/journal.pcbi.1003369

    Article  CAS  Google Scholar 

  120. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B (2012) Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature 490:556–560. doi:10.1038/nature11503

    Article  CAS  Google Scholar 

  121. Acuner Ozbabacan SE, Keskin O, Nussinov R, Gursoy A (2012) Enriching the human apoptosis pathway by predicting the structures of protein-protein complexes. J Struct Biol 179:338–346. doi:10.1016/j.jsb.2012.02.002

    Article  CAS  Google Scholar 

  122. Kuzu G, Keskin O, Gursoy A, Nussinov R (2012) Constructing structural networks of signaling pathways on the proteome scale. Curr Opin Struct Biol 22:367–377. doi:10.1016/j.sbi.2012.04.004

    Article  CAS  Google Scholar 

  123. Guven Maiorov E, Keskin O, Gursoy A, Nussinov R (2013) The structural network of inflammation and cancer: merits and challenges. Semin Cancer Biol 23:243–251. doi:10.1016/j.semcancer.2013.05.003

    Article  CAS  Google Scholar 

  124. Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R (2015) A structural view of negative regulation of the toll-like receptor-mediated inflammatory pathway. Biophys J 109:1214–1226. doi:10.1016/j.bpj.2015.06.048

    Article  CAS  Google Scholar 

  125. Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai C-J, Nussinov R (2015) The architecture of the TIR domain signalosome in the toll-like receptor-4 signaling pathway. Sci Rep 5:13128. doi:10.1038/srep13128

    Article  CAS  Google Scholar 

  126. Acuner-Ozbabacan E, Engin B, Guven-Maiorov E, Kuzu G, Muratcioglu S, Baspinar A, Chen Z, Van Waes C, Gursoy A, Keskin O, Nussinov R (2014) The structural network of Interleukin-10 and its implications in inflammation and cancer. BMC Genomics 15:S2. doi:10.1186/1471-2164-15-S4-S2

    Article  CAS  Google Scholar 

  127. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O (2014) The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 10:e1003470. doi:10.1371/journal.pcbi.1003470

    Article  CAS  Google Scholar 

  128. Gallone G, Simpson TI, Armstrong JD, Jarman AP (2011) Bio::Homology::InterologWalk – a Perl module to build putative protein-protein interaction networks through interolog mapping. BMC Bioinformatics 12:289. doi:10.1186/1471-2105-12-289

    Article  Google Scholar 

  129. Rezende AM, Folador EL, Resende DDM, Ruiz JC (2012) Computational prediction of protein-protein interactions in Leishmania predicted proteomes. PLoS One 7:e51304. doi:10.1371/journal.pone.0051304

    Article  CAS  Google Scholar 

  130. Folador EL, Hassan SS, Lemke N, Barh D, Silva A, Ferreira RS, Azevedo V (2014) An improved interolog mapping-based computational prediction of protein-protein interactions with increased network coverage. Integr Biol (Camb) 6:1080–1087. doi:10.1039/c4ib00136b

    Article  CAS  Google Scholar 

  131. Murakami Y, Mizuguchi K (2014) Homology-based prediction of interactions between proteins using averaged one-dependence estimators. BMC Bioinformatics 15:213. doi:10.1186/1471-2105-15-213

    Article  CAS  Google Scholar 

  132. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1007/BF00994018

    Google Scholar 

  133. Ben-Hur A, Noble WS (2005) Kernel methods for predicting protein-protein interactions. Bioinformatics 21(Suppl 1):i38–i46. doi:10.1093/bioinformatics/bti1016

    Article  CAS  Google Scholar 

  134. Martin S, Roe D, Faulon J-L (2005) Predicting protein-protein interactions using signature products. Bioinformatics 21:218–226. doi:10.1093/bioinformatics/bth483

    Article  CAS  Google Scholar 

  135. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007) Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A 104:4337–4341. doi:10.1073/pnas.0607879104

    Article  CAS  Google Scholar 

  136. Vert J-P, Qiu J, Noble WS (2007) A new pairwise kernel for biological network inference with support vector machines. BMC Bioinformatics 8:S8. doi:10.1186/1471-2105-8-S10-S8

    Article  CAS  Google Scholar 

  137. Guo Y, Yu L, Wen Z, Li M (2008) Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res 36:3025–3030. doi:10.1093/nar/gkn159

    Article  CAS  Google Scholar 

  138. Park Y (2009) Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences. BMC Bioinformatics 10:419. doi:10.1186/1471-2105-10-419

    Article  CAS  Google Scholar 

  139. Zhao X-W, Ma Z-Q, Yin M-H (2012) Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou’s Pseudo amino acid composition. Protein Pept Lett 19:492–500. doi:10.2174/092986612800191080

    Article  CAS  Google Scholar 

  140. Zhang S-W, Hao L-Y, Zhang T-H (2014) Prediction of protein–protein interaction with pairwise kernel support vector machine. Int J Mol Sci 15:3220–3233. doi:10.3390/ijms15023220

    Article  CAS  Google Scholar 

  141. Liu X, Liu B, Huang Z, Shi T, Chen Y, Zhang J (2012) SPPS: a sequence-based method for predicting probability of protein-protein interaction partners. PLoS One 7:e30938. doi:10.1371/journal.pone.0030938

    Article  CAS  Google Scholar 

  142. Guo Y, Li M, Pu X, Li G, Guang X, Xiong W, Li J (2010) PRED_PPI: a server for predicting protein-protein interactions based on sequence data with probability assignment. BMC Res Notes 3:145. doi:10.1186/1756-0500-3-145

    Article  CAS  Google Scholar 

  143. Shi M-G, Xia J-F, Li X-L, Huang D-S (2010) Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Amino Acids 38:891–899. doi:10.1007/s00726-009-0295-y

    Article  CAS  Google Scholar 

  144. Smialowski P, Pagel P, Wong P, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Rattei T, Frishman D, Ruepp A (2010) The Negatome database: a reference set of non-interacting protein pairs. Nucleic Acids Res 38:D540–D544. doi:10.1093/nar/gkp1026

    Article  CAS  Google Scholar 

  145. Blohm P, Frishman G, Smialowski P, Goebels F, Wachinger B, Ruepp A, Frishman D (2014) Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res 42:D396–D400. doi:10.1093/nar/gkt1079

    Article  CAS  Google Scholar 

  146. Yu J, Guo M, Needham CJ, Huang Y, Cai L, Westhead DR (2010) Simple sequence-based kernels do not predict protein-protein interactions. Bioinformatics 26:2610–2614. doi:10.1093/bioinformatics/btq483

    Article  CAS  Google Scholar 

  147. Park Y, Marcotte EM (2011) Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 27:3024–3028. doi:10.1093/bioinformatics/btr514

    Article  CAS  Google Scholar 

  148. Park Y, Marcotte EM (2012) Flaws in evaluation schemes for pair-input computational predictions. Nat Methods 9:1134–1136. doi:10.1038/nmeth.2259

    Article  CAS  Google Scholar 

  149. de Vries SJ, Bonvin AMJJ (2011) CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS One 6:e17695. doi:10.1371/journal.pone.0017695

    Article  CAS  Google Scholar 

  150. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207. doi:10.1021/ci600342e

    Article  CAS  Google Scholar 

  151. Deng Z, Chuaqui C, Singh J (2004) Structural Interaction Fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47:337–344. doi:10.1021/jm030331x

    Article  CAS  Google Scholar 

  152. Uchikoga N, Hirokawa T (2010) Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes. BMC Bioinformatics 11:236. doi:10.1186/1471-2105-11-236

    Article  CAS  Google Scholar 

  153. Enright AJ, Iliopulous I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90. doi:10.1038/47056

    Article  CAS  Google Scholar 

  154. Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753. doi:10.1126/science.285.5428.751

    Article  CAS  Google Scholar 

  155. Marcotte CJ, Marcotte EM (2002) Predicting functional linkages from gene fusions with confidence. Appl Bioinformatics 1:93–100

    Google Scholar 

  156. Yanai I, Derti A, DeLisi C (2001) Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc Natl Acad Sci U S A 98:7940–7945. doi:10.1073/pnas.141236298

    Article  CAS  Google Scholar 

  157. Shimoda T, Ishida T, Suzuki S, Ohue M, Akiyama Y (2013) MEGADOCK-GPU: acceleration of protein-protein docking calculation on GPUs. In: Proc. Int. Conf. Bioinformatics, Comput. Biol. Biomed. Informatics – BCB’13. ACM Press, New York, pp 883–889. doi:10.1145/2506583.2506693

  158. Shimoda T, Suzuki S, Ohue M, Ishida T, Akiyama Y (2015) Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures. BMC Syst Biol 9:S6. doi:10.1186/1752-0509-9-S1-S6

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by KAKENHI (grant number 15K00407, 24240044, 19300102, 16K00388), a Grant-in-Aid for Research and Development of The Next-Generation Integrated Life Simulation Software, all from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). An application MEGADOCK mentioned in this chapter was developed using the TSUBAME supercomputer system at the Global Scientific Information and Computing Center, Tokyo Institute of Technology, K computer at RIKEN, Japan, through the HPCI System Research Projects (Project ID: hp120131, hp140173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Matsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matsuzaki, Y., Uchikoga, N., Ohue, M., Akiyama, Y. (2016). Rigid-Docking Approaches to Explore Protein–Protein Interaction Space. In: Nookaew, I. (eds) Network Biology. Advances in Biochemical Engineering/Biotechnology, vol 160. Springer, Cham. https://doi.org/10.1007/10_2016_41

Download citation

Publish with us

Policies and ethics