Skip to main content

Novel Technologies for Optimal Strain Breeding

  • Chapter
  • First Online:
Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

The implementation of a knowledge-based bioeconomy requires the rapid development of highly efficient microbial production strains that are able to convert renewable carbon sources to value-added products, such as bulk and fine chemicals, pharmaceuticals, or proteins at industrial scale. Starting from classical strain breeding by random mutagenesis and screening in the 1950s via rational design by metabolic engineering initiated in the 1970s, a range of powerful new technologies have been developed in the past two decades that can revolutionize future strain engineering. In particular, next-generation sequencing technologies combined with new methods of genome engineering and high-throughput screening based on genetically encoded biosensors have allowed for new concepts. In this chapter, selected new technologies relevant for breeding microbial production strains with a special emphasis on amino acid producers will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bott M (2015) Need for speed – finding productive mutations using transcription factor-based biosensors, fluorescence-activated cell sorting and recombineering. Microb Biotechnol 8(1):8–10. doi:10.1111/1751-7915.12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. doi:10.1007/s00253-015-6508-2

    Article  CAS  PubMed  Google Scholar 

  3. Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG (2013) Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. Appl Biochem Microbiol 49(9):723–742. doi:10.1134/S0003683813090056

    Article  CAS  Google Scholar 

  4. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2), e4489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70(2):546–550

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75(6):1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. doi:10.1146/annurev.genet.36.061102.093104

    Article  CAS  PubMed  Google Scholar 

  8. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98(12):6742–6746. doi:10.1073/pnas.121164898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M, Court C, Court DL (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407(1):45–59. doi:10.1016/j.jmb.2011.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boyle NR, Reynolds TS, Evans R, Lynch M, Gill RT (2013) Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol J 8(5):515–522. doi:10.1002/biot.201200237

    Article  CAS  PubMed  Google Scholar 

  11. Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246(1–2):321–330

    Article  CAS  PubMed  Google Scholar 

  12. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Meth Enzymol 421:171–199. doi:10.1016/S0076-6879(06)21015-2

    Article  CAS  PubMed  Google Scholar 

  13. Maresca M, Erler A, Fu J, Friedrich A, Zhang YM, Stewart AF (2010) Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol Biol 11:54. doi:10.1186/1471-2199-11-54

    Google Scholar 

  14. Mosberg JA, Lajoie MJ, Church GM (2010) Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186(3):791–799. doi:10.1534/genetics.110.120782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369. doi:10.1093/nar/gkt312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T (2015) A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 99(12):5151–5162. doi:10.1007/s00253-015-6485-5

    Article  CAS  PubMed  Google Scholar 

  17. Katashkina JI, Hara Y, Golubeva LI, Andreeva IG, Kuvaeva TM, Mashko SV (2009) Use of the l Red-recombineering method for genetic engineering of Pantoea ananatis. BMC Mol Biol 10:34. doi:10.1186/1471-2199-10-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. van Pijkeren JP, Neoh KM, Sirias D, Findley AS, Britton RA (2012) Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 3(4):209–217. doi:10.4161/bioe.21049

    Article  PubMed  PubMed Central  Google Scholar 

  19. Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from gram-negative and gram-positive bacteria and their phages. Proc Natl Acad Sci U S A 105(5):1626–1631. doi:10.1073/pnas.0709089105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107. doi:10.1111/j.1365-2958.2008.06109.x

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Y, Muyrers JP, Rientjes J, Stewart AF (2003) Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. doi:10.1038/nature08187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alper MD, Ames BN (1975) Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J Bacteriol 121(1):259–266

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38(6):e92. doi:10.1093/nar/gkp1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pohl T, Uhlmann M, Kaufenstein M, Friedrich T (2007) Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 46(37):10694–10702. doi:10.1021/bi701057t

    Article  CAS  PubMed  Google Scholar 

  26. Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163

    Article  CAS  PubMed  Google Scholar 

  27. Lee DJ, Bingle LE, Heurlier K, Pallen MJ, Penn CW, Busby SJ, Hobman JL (2009) Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol 9:252. doi:10.1186/1471-2180-9-252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446. doi:10.1038/nbt.2183

    Article  CAS  PubMed  Google Scholar 

  29. Mosberg JA, Gregg CJ, Lajoie MJ, Wang HH, Church GM (2012) Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One 7(9), e44638. doi:10.1371/journal.pone.0044638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swaminathan S, Ellis HM, Waters LS, Yu DG, Lee EC, Court DL, Sharan SK (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29(1):14–21

    Article  CAS  PubMed  Google Scholar 

  31. Costantino N, Court DL (2003) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100(26):15748–15753. doi:10.1073/pnas.2434959100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tominaga M, Kawai-Noma S, Kawagishi I, Sowa Y, Saito K, Umeno D (2015) Liquid-based iterative recombineering method tolerant to counter-selection escapes. PLoS One 10(3):e0119818. doi:10.1371/journal.pone.0119818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9(6):591–593. doi:10.1038/nmeth.1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI (2012) The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 93(1):331–341. doi:10.1007/s00253-011-3713-5

    Article  PubMed  CAS  Google Scholar 

  35. Krylov AA, Kolontaevsky EE, Mashko SV (2014) Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases. J Microbiol Methods 105:109–115. doi:10.1016/j.mimet.2014.07.028

    Article  CAS  PubMed  Google Scholar 

  36. Mishra AK, Krumbach K, Rittmann D, Appelmelk B, Pathak V, Pathak AK, Nigou J, Geurtsen J, Eggeling L, Besra GS (2011) Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two alpha(1 → 2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol Microbiol 80(5):1241–1259. doi:10.1111/j.1365-2958.2011.07640.x

    Google Scholar 

  37. van Pijkeren JP, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40(10):e76. doi:10.1093/nar/gks147

    Google Scholar 

  38. Charpentier E (2015) CRISPR-Cas9: how research on a bacterial RNA-guided mechanism opened new perspectives in biotechnology and biomedicine. EMBO Mol Med 7(4):363–365. doi:10.15252/emmm.201504847

    Google Scholar 

  39. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. doi:10.1126/science.1258096

    Google Scholar 

  40. Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J (2015) CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 52(5):289–296. doi:10.1136/jmedgenet-2014-102968

    Article  PubMed  CAS  Google Scholar 

  41. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764. doi:10.1126/science.1079512

    Article  CAS  PubMed  Google Scholar 

  42. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  44. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  46. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  47. Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437. doi:10.1093/Nar/Gkt520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. doi:10.1038/Nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Zhang ZT, Seo SO, Choi KJ, Lu T, Jin YS, Blaschek HP (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1–5. doi:10.1016/j.jbiotec.2015.02.005

    Article  PubMed  CAS  Google Scholar 

  50. van Pijkeren JP, Britton RA (2014) Precision genome engineering in lactic acid bacteria. Microb Cell Fact 13(Suppl 1):S10. doi:10.1186/1475-2859-13-S1-S10

    Google Scholar 

  51. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514. doi:10.1128/AEM.04023-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cress BF, Toparlak OD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, Jones JA, Linhardt RJ, Koffas MA (2015) CRISPathBrick: Modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synth Biol 4(9):987–1000. doi:10.1021/acssynbio.5b00012

    Article  CAS  PubMed  Google Scholar 

  54. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728. doi:10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  55. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47(4):231–243. doi:10.1093/abbs/gmv007

    Article  PubMed  Google Scholar 

  56. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. doi:10.1021/acssynbio.5b00038

    Article  CAS  PubMed  Google Scholar 

  58. Cleto S, Jensen JVK, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56. doi:10.1126/science.1190719

    Article  CAS  PubMed  Google Scholar 

  60. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. doi:10.1038/Msb.2012.66

    Google Scholar 

  61. Iwadate Y, Honda H, Sato H, Hashimoto M, Kato J (2011) Oxidative stress sensitivity of engineered Escherichia coli cells with a reduced genome. FEMS Microbiol Lett 322(1):25–33. doi:10.1111/j.1574-6968.2011.02331.x

    Article  CAS  PubMed  Google Scholar 

  62. Feher T, Burland V, Posfai G (2012) In the fast lane: large-scale bacterial genome engineering. J Biotechnol 160(1–2):72–79. doi:10.1016/j.jbiotec.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  63. Krishnakumar R, Grose C, Haft DH, Zaveri J, Alperovich N, Gibson DG, Merryman C, Glass JI (2014) Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Res 42(14):e111. doi:10.1093/nar/gku509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Posfai G, Plunkett G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046. doi:10.1126/science.1126439

    Article  CAS  PubMed  Google Scholar 

  65. Hara KY, Shimodate N, Ito M, Baba T, Mori H, Mori H (2009) Systematic genome-wide scanning for genes involved in ATP generation in Escherichia coli. Metab Eng 11(1):1–7. doi:10.1016/j.ymben.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  66. Ito M, Baba T, Mori H, Mori H (2005) Functional analysis of 1440 Escherichia coli genes using the combination of knock-out library and phenotype microarrays. Metab Eng 7(4):318–327. doi:10.1016/j.ymben.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  67. Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15(2):73–81. doi:10.1093/dnares/dsn002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J (2013) Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol 79(19):6006–6015. doi:10.1128/AEM.01634-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirokawa Y, Kawano H, Tanaka-Masuda K, Nakamura N, Nakagawa A, Ito M, Mori H, Oshima T, Ogasawara N (2013) Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. J Biosci Bioeng 116(1):52–58. doi:10.1016/j.jbiosc.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  70. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mizoguchi H, Sawano Y, Kato J, Mori H (2008) Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res 15(5):277–284. doi:10.1093/dnares/dsn019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8:2. doi:10.1186/1475-2859-8-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506. doi:10.1007/s00253-009-2307-y

    Article  CAS  PubMed  Google Scholar 

  74. Baez-Viveros JL, Flores N, Juarez K, Castillo-Espana P, Bolivar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microb Cell Fact 6:30. doi:10.1186/1475-2859-6-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Son YJ, Phue JN, Trinh LB, Lee SJ, Shiloach J (2011) The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth. Microb Cell Fact 10:52. doi:10.1186/1475-2859-10-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Csorgo B, Feher T, Timar E, Blattner FR, Posfai G (2012) Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 11:11. doi:10.1186/1475-2859-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes – example: amino acids. J Biotechnol 129(2):181–190. doi:10.1016/j.jbiotec.2007.01.031

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71(6):3369–3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuge Y, Suzuki N, Inui M, Yukawa H (2007) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74(6):1333–1341. doi:10.1007/s00253-006-0788-5

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71(12):8472–8480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S (2015) Chassis organism from Corynebacterium glutamicum–a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10(2):290–301. doi:10.1002/biot.201400041

    Article  CAS  PubMed  Google Scholar 

  82. Bian X, Huang F, Stewart FA, Xia L, Zhang Y, Müller R (2012) Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. ChemBioChem 13(13):1946–1952. doi:10.1002/cbic.201200310

    Article  CAS  PubMed  Google Scholar 

  83. Esnault E, Valens M, Espeli O, Boccard F (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genetics 3(12):e226. doi:10.1371/journal.pgen.0030226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Karasawa M, Tosaka O, Ikeda S, Yoshii H (1986) Application of protoplast fusion to the development of L-threonine and L-lysine producers. Agric Biol Chem 50(2):339–346

    CAS  Google Scholar 

  85. Nishio Y, Usuda Y, Matsui K, Kurata H (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 4:160. doi:10.1038/msb4100201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Biryukova IV, Krylov AA, Kiseleva EM, Minaeva NI, Mashko SV (2010) Construction of the new Escherichia coli K-12 MG 1655 novel strain with improved growth characteristics for application in metabolic engineering. Russ J Genet 46(3):308–314. doi:10.1134/S1022795410030075

    Article  CAS  Google Scholar 

  87. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97(11):5995–6000. doi:10.1073/pnas.090527097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183(21):6384–6393. doi:10.1128/Jb.183.21.6384-6393.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivero-Müller A, Lajic S, Huhtaniemi I (2007) Assisted large fragment insertion by red/ET-recombination (ALFIRE) - an alternative and enhanced method for large fragment recombineering. Nucleic Acids Res 35(10):e78. doi:10.1093/nar/gkm250

    Google Scholar 

  91. Campbell AM (1992) Chromosomal insertion sites for phages and plasmids. J Bacteriol 174(23):7495–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Minaeva NI, Gak ER, Zimenkov DV, Skorokhodova AY, Biryukova IV, Mashko SV (2008) Dual-in/out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure. BMC Biotechnol 8:63. doi:10.1186/1472-6750-8-63

    Google Scholar 

  93. Ublinskaya AA, Samsonov VV, Mashko SV, Stoynova NV (2012) A PCR-free cloning method for the targeted j80Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods 89(3):167–173. doi:10.1016/j.mimet.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  94. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313. doi:10.1126/science.1214547

    Article  CAS  PubMed  Google Scholar 

  95. Santos CN, Regitsky DD, Yoshikuni Y (2013) Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Commun 4:2503. doi:10.1038/ncomms3503

    Article  PubMed  CAS  Google Scholar 

  96. Suzuki N, Inui M (2013) Genome engineering in Corynebacterium glutamicum. In: Yukawa H, Inui A (eds) Corynebacterium glutamicum - biology and biotechnology. Microbiology monographs, vol 23. Springer, Berlin, pp 89–105

    Google Scholar 

  97. Suzuki N, Tsuge Y, Inui M, Yukawa H (2005) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67(2):225–233

    Article  CAS  PubMed  Google Scholar 

  98. Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P (2004) Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 51(2):511–522. doi:10.1046/j.1365-2958.2003.03847.x

    Article  CAS  PubMed  Google Scholar 

  99. Bertram R, Kolb M, Hillen W (2009) In vivo activation of tetracycline repressor by Cre/lox-mediated gene assembly. J Mol Microbiol Biotechnol 17(3):136–145. doi:10.1159/000229606

    Article  CAS  PubMed  Google Scholar 

  100. Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 9:685. doi:10.1038/msb.2013.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–353. doi:10.1126/science.1205822

    Article  CAS  PubMed  Google Scholar 

  102. Smith GR (1991) Conjugational recombination in E. coli: myths and mechanisms. Cell 64(1):19–27

    Article  CAS  PubMed  Google Scholar 

  103. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360. doi:10.1126/science.1241459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590. doi:10.1146/annurev-biochem-062608-095938

    Article  CAS  PubMed  Google Scholar 

  105. Eggeling L, Bott M, Marienhagen J (2015) Novel screening methods-biosensors. Curr Opin Biotechnol 35C:30–36. doi:10.1016/j.copbio.2014.12.021

    Article  CAS  Google Scholar 

  106. Mustafi N, Bott M, Frunzke J (2015) Genetically encoded biosensors for strain development and single-cell analysis of Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacterium glutamicum – from systems biology to biotechnological applications. Caister Academic Press, Norfolk, pp 179–196

    Chapter  Google Scholar 

  107. Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154. doi:10.1016/j.copbio.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  108. Bellmann A, Vrljic M, Patek M, Sahm H, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774

    Article  CAS  PubMed  Google Scholar 

  109. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13(5):R40. doi:10.1186/Gb-2012-13-5-R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14(4):449–457. doi:10.1016/j.ymben.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  111. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194. doi:10.1016/j.ymben.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  112. Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29. doi:10.1021/sb400059y

    Article  CAS  PubMed  Google Scholar 

  113. Tang SY, Cirino PC (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chem Int Ed Engl 50(5):1084–1086. doi:10.1002/anie.201006083

    Article  CAS  PubMed  Google Scholar 

  114. Tang SY, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135(27):10099–10103. doi:10.1021/ja402654z

    Article  CAS  PubMed  Google Scholar 

  115. Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2(1):47–58. doi:10.1021/sb300091d

    Article  CAS  PubMed  Google Scholar 

  116. Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M (2014) SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 3:41–47. doi:10.1021/sb400110j

    Article  CAS  PubMed  Google Scholar 

  117. Ding H, Hidalgo E, Demple B (1996) The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 271(52):33173–33175

    Article  CAS  PubMed  Google Scholar 

  118. Gaudu P, Weiss B (1996) SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci U S A 93(19):10094–10098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22(11):2614–2622. doi:10.1093/emboj/cdg252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krapp AR, Humbert MV, Carrillo N (2011) The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology 157(Pt 4):957–965. doi:10.1099/mic.0.039461-0

    Article  CAS  PubMed  Google Scholar 

  121. Unthan S, Radek A, Wiechert W, Oldiges M, Noack S (2015) Bioprocess automation on a mini pilot plant enables fast quantitative microbial phenotyping. Microb Cell Fact 14:32. doi:10.1186/s12934-015-0216-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bott, M., Eggeling, L. (2016). Novel Technologies for Optimal Strain Breeding. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_33

Download citation

Publish with us

Policies and ethics