Skip to main content

Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology?

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 154))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BL:

Bioluminescence

PpyLuc:

North American Photinus pyralis firefly luciferase

BRET:

Bioluminescence Resonance Energy Transfer

PCA:

Protein Complementation Assay

GPCR:

G protein coupled receptors

CCD:

Charge-coupled device

CMOS:

Complementary metal-oxide semiconductors

HTS:

High Throughput Screening

References

  1. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230

    Article  CAS  Google Scholar 

  2. Ando Y, Niwa K, Yamada N et al (2008) Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2:44–47

    Article  CAS  Google Scholar 

  3. Kricka LJ (2000) Application of bioluminescence and chemiluminescence in biomedical sciences. Methods Enzymol 305:333–345

    Article  CAS  Google Scholar 

  4. Cali JJ, Niles A, Valley MP et al (2008) Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 4:103–120

    Article  CAS  Google Scholar 

  5. Roda A, Michelini E, Cevenini L et al (2014) Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 86:7299–7304

    Article  CAS  Google Scholar 

  6. Scott D, Dikici E, Ensor M, Daunert S (2011) Bioluminescence and its impact on bioanalysis. Annu Rev Anal Chem (Palo Alto Calif) 4:297–319

    Article  CAS  Google Scholar 

  7. De Wet JR, Wood KV, Helinski DR et al (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82:7870–7873

    Article  Google Scholar 

  8. Branchini BR, Southworth TL, DeAngelis JP et al (2006) Luciferase from the Italian firefly Luciola italica: molecular cloning and expression. Comp Biochem Physiol B Biochem Mol Biol 145:159–167

    Article  CAS  Google Scholar 

  9. Markova SV, Golz S, Frank LA et al (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme. J Biol Chem 279:3212–3217

    Article  CAS  Google Scholar 

  10. Stolz U, Velez S, Wood KV et al (2003) Darwinian natural selection for orange bioluminescent color in a Jamaican click beetle. Proc Natl Acad Sci USA 100:14955–14959

    Article  CAS  Google Scholar 

  11. Li J, Chen L, Du L et al (2013) Cage the firefly luciferin!—a strategy for developing bioluminescent probes. Chem Soc Rev 42:662–676

    Article  CAS  Google Scholar 

  12. Navizet I, Liu YJ, Ferré N et al (2011) The chemistry of bioluminescence: an analysis of chemical functionalities. Chemphyschem 12:3064–3076

    Article  CAS  Google Scholar 

  13. Fraga H, Fontes R, Esteves da Silva JC (2005) Synthesis of luciferyl coenzyme A: a bioluminescent substrate for firefly luciferase in the presence of AMP. Angew Chem Int Ed Engl 44:3427–3429

    Article  CAS  Google Scholar 

  14. Day RN, Kawecki M, Berry D (1998) Dual-function reporter protein for analysis of gene expression in living cells. Biotechniques 25:848–850, 852–854, 856

    Google Scholar 

  15. Leclerc GM, Boockfor FR, Faught WJ et al (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques 29(590-591):594–596

    Google Scholar 

  16. Dranchak P, MacArthur R, Guha R et al (2013) Profile of the GSK published protein kinase inhibitor set across ATP-dependent and-independent luciferases: implications for reporter-gene assays. PLoS One 8:e57888

    Article  CAS  Google Scholar 

  17. Herbst KJ, Allen MD, Zhang J (2009) The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase. PLoS One 4:e5642

    Article  CAS  Google Scholar 

  18. Ho PI, Yue K, Pandey P, Breault L et al (2013) Reporter enzyme inhibitor study to aid assembly of orthogonal reporter gene assays. ACS Chem Biol 8:1009–1017

    Article  CAS  Google Scholar 

  19. Branchini BR, Southworth TL, Khattak NF et al (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148

    Article  CAS  Google Scholar 

  20. Kitayama A, Yoshizaki H, Ohmiya Y et al (2003) Creation of a thermostable firefly luciferase with pH-insensitive luminescent color. Photochem Photobiol 77:333–338

    Article  CAS  Google Scholar 

  21. Dunlap P (2014) Biochemistry and genetics of bacterial bioluminescence. Adv Biochem Eng Biotechnol 144:37–64

    Google Scholar 

  22. Tannous BA, Teng J (2011) Secreted blood reporters: insights and applications. Biotechnol Adv 29:997–1003

    Article  CAS  Google Scholar 

  23. Lewandrowski GK, Magee CN, Mounayar M et al (2014) Simultaneous in vivo monitoring of regulatory and effector T lymphocytes using secreted gaussia luciferase, Firefly luciferase, and secreted alkaline phosphatase. Methods Mol Biol 1098:211–227

    Article  CAS  Google Scholar 

  24. Yamada Y, Nishide SY, Nakajima Y et al (2013) Monitoring circadian time in rat plasma using a secreted Cypridina luciferase reporter. Anal Biochem 439:80–87

    Article  CAS  Google Scholar 

  25. Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  CAS  Google Scholar 

  26. Chen Y, Wang L, Cheng X et al (2014) An ultrasensitive system for measuring the USPs and OTULIN activity using Nanoluc as a reporter. Biochem Biophys Res Commun 455:178–183

    Article  CAS  Google Scholar 

  27. Heise K, Oppermann H, Meixensberger J et al (2013) Dual luciferase assay for secreted luciferases based on Gaussia and NanoLuc. Assay Drug Dev Technol 11:244–252

    Article  CAS  Google Scholar 

  28. Stacer AC, Nyati S, Moudgil P et al (2013) NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging 12:1–13

    Google Scholar 

  29. Loh JM, Proft T (2014) Comparison of firefly luciferase and NanoLuc luciferase for biophotonic labeling of group A Streptococcus. Biotechnol Lett 36:829–834

    Article  CAS  Google Scholar 

  30. Nakajima Y, Kobayashi K, Yamagishi K et al (2004) cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. Biosci Biotechnol Biochem 68:565–570

    Article  Google Scholar 

  31. Markova SV, Larionova MD, Burakova LP et al (2014) The smallest natural high-active luciferase: Cloning and characterization of novel 16.5-kDa luciferase from copepod Metridia longa. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2014.12.082 (in press)

  32. Kelkar M, De A (2012) Bioluminescence based in vivo screening technologies. Curr Opin Pharmacol 12:592–600

    Article  CAS  Google Scholar 

  33. Nakajima Y, Ohmiya Y (2010) Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opin Drug Discov 5:835–849

    Article  CAS  Google Scholar 

  34. Michelini E, Cevenini L, Mezzanotte L et al (2009) Luminescent probes and visualization of bioluminescence. Methods Mol Biol 574:1–13

    Article  CAS  Google Scholar 

  35. Baumann B, van der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agric Food Chem 55:2115–2120

    Article  CAS  Google Scholar 

  36. Ivask A, François M, Kahru A et al (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156

    Article  CAS  Google Scholar 

  37. Raut N, O’Connor G, Pasini P et al (2012) Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 402:3147–3159

    Article  CAS  Google Scholar 

  38. Rodriguez R, Miller KM (2014) Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat Rev Genet 15:783–796

    Article  CAS  Google Scholar 

  39. Kesarwala AH, Prior JL, Sun J et al (2006) Second-generation triple reporter for bioluminescence, micro-positron emission tomography, and fluorescence imaging. Mol Imaging 5:465–474

    Google Scholar 

  40. Date A, Pasini P, Sangal A, Daunert S (2010) Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis. Anal Chem 82:6098–6103

    Article  CAS  Google Scholar 

  41. Cevenini L, Michelini E, D’Elia M et al (2013) Dual-color bioluminescent bioreporter for forensic analysis: evidence of androgenic and anti-androgenic activity of illicit drugs. Anal Bioanal Chem 405:1035–1045

    Article  CAS  Google Scholar 

  42. Ekström L, Cevenini L, Michelini E et al (2013) Testosterone challenge and androgen receptor activity in relation to UGT2B17 genotypes. Eur J Clin Invest 43:248–255

    Article  CAS  Google Scholar 

  43. Gammon ST, Leevy WM, Gross S et al (2006) Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources. Anal Chem 78:1520–1527

    Article  CAS  Google Scholar 

  44. Cevenini L, Camarda G, Michelini E et al (2014) Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Anal Chem 86:8814–8821

    Article  CAS  Google Scholar 

  45. Mezzanotte L, An N, Mol IM et al (2014) A new multicolor bioluminescence imaging platform to investigate NF-κB activity and apoptosis in human breast cancer cells. PLoS One. 9:e85550

    Article  CAS  Google Scholar 

  46. Van Rijn S, Würdinger T, Nilsson J (2014) Multiplex functional bioluminescent reporters using Gaussia luciferase fused to epitope tags in an immunobinding assay. Methods Mol Biol 1098:231–247

    Article  CAS  Google Scholar 

  47. Bolton EK, Sayler GS, Nivens DE et al (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 85:179–185

    Article  CAS  Google Scholar 

  48. Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46:11979–11987

    Article  CAS  Google Scholar 

  49. Michelini E, Cevenini L, Calabretta MM et al (2013) Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 405:6155–6163

    Article  CAS  Google Scholar 

  50. Simpson ML, Sayler GS, Patterson G et al (2001) An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 72:134–140

    Article  CAS  Google Scholar 

  51. Welsh DK, Noguchi T (2012) Cellular bioluminescence imaging. Cold Spring Harb Protoc 8:2012

    Google Scholar 

  52. Yasunaga M, Nakajima Y, Ohmiya Y (2014) Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution. Anal Bioanal Chem 406:5735–5742

    Article  CAS  Google Scholar 

  53. De A, Jasani A, Arora R, Gambhir SS (2013) Evolution of BRET biosensors from live cell to tissue-scale in vivo imaging. Front Endocrinol (Lausanne) 4:131

    Google Scholar 

  54. Kaczor AA, Makarska-Bialokoz M, Selent J et al (2014) Application of BRET for studying G protein-coupled receptors. Mini Rev Med Chem 14:411–425

    Article  CAS  Google Scholar 

  55. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  CAS  Google Scholar 

  56. Dacres H, Michie M, Anderson A et al (2013) Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor. Biosens Bioelectron 41:459–464

    Article  CAS  Google Scholar 

  57. Shekhawat SS, Ghosh I (2011) Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 15:789–797

    Article  CAS  Google Scholar 

  58. Takakura H, Hattori M, Tanaka M et al (2015) Cell-based assays and animal models for GPCR drug screening. Methods Mol Biol 1272:257–270

    Article  Google Scholar 

  59. Paulmurugan R, Tamrazi A, Massoud TF et al (2011) In vitro and in vivo molecular imaging of estrogen receptor α and β homo- and heterodimerization: exploration of new modes of receptor regulation. Mol Endocrinol 25:2029–2040

    Article  CAS  Google Scholar 

  60. Fan-Minogue H, Cao Z, Paulmurugan R et al (2010) Noninvasive molecular imaging of c-Myc activation in living mice. Proc Natl Acad Sci USA 107:15892–15897. doi:10.1073/pnas.1007443107

    Article  Google Scholar 

  61. Koterba KL, Rowan BG (2006) Measuring ligand-dependent and ligand-independent interactions between nuclear receptors and associated proteins using bioluminescence resonance energy transfer (BRET). Nucl Recept Signal 4:e021

    Google Scholar 

  62. Hsu CY, Chen CW, Yu HP et al (2013) Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials 34:1204–1212

    Article  CAS  Google Scholar 

  63. Klerk CP, Overmeer RM, Niers TM et al (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(7–13):30

    Google Scholar 

  64. Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med. 54:631–634

    CAS  Google Scholar 

  65. Tseng JC, Kung AL (2015) Quantitative bioluminescence imaging of mouse tumor models. Cold Spring Harb Protoc. doi:10.1101/pdb.prot078261

    Google Scholar 

  66. Michelini E, Cevenini L, Calabretta MM et al (2014) Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery. Anal Bioanal Chem 406:5531–5539

    Article  CAS  Google Scholar 

  67. Badr CE (2014) Bioluminescence imaging: basics and practical limitations. Methods Mol Biol 1098:1–18

    Article  CAS  Google Scholar 

  68. Liang Y, Walczak P, Bulte JW (2012) Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells. J Biomed Opt 17:016004

    Article  CAS  Google Scholar 

  69. Mezzanotte L, Aswendt M, Tennstaedt A et al (2013) Evaluating reporter genes of different luciferases for optimized in vivo bioluminescence imaging of transplanted neural stem cells in the brain. Contrast Media Mol Imaging 8:505–513

    Article  CAS  Google Scholar 

  70. So MK, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  CAS  Google Scholar 

  71. Alam R, Karam LM, Doane TL (2014) Near infrared bioluminescence resonance energy transfer from firefly luciferase-quantum dot bionanoconjugates. Nanotechnology 25:495606

    Article  CAS  Google Scholar 

  72. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  CAS  Google Scholar 

  73. Michelini E, Cevenini L, Mezzanotte L et al (2010) Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 398:227–238

    Article  CAS  Google Scholar 

  74. Roda A, Cevenini L, Borg S et al (2013) Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13:4881–4889

    Article  CAS  Google Scholar 

  75. Roda A, Roda B, Cevenini L et al (2011) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401:201–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cevenini, L., Calabretta, M.M., Calabria, D., Roda, A., Michelini, E. (2015). Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology?. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3. Advances in Biochemical Engineering/Biotechnology, vol 154. Springer, Cham. https://doi.org/10.1007/10_2015_325

Download citation

Publish with us

Policies and ethics