Skip to main content

Assessment of Treatment Response by FDG-PET

  • Chapter
Positron Emission Tomography

Summary

The role of FDG-PET imaging in treatment evaluation is most firmly established in posttreatment assessment of Hodgkin’s disease and non-Hodgkin’s lymphoma. Clinical effectiveness has also been demonstrated for postchemotherapy or postradiation assessment of head and neck cancer and postchemotherapy assessment of testicular tumors. Early results support the use of FDG-PET imaging for preoperative assessment of neoadjuvant therapy in lung cancer to avoid pneumonectomy for tumors that have not responded to treatment. A potentially valuable application of PET imaging lies in the early prediction of treatment response in lymphoma and in neoadjuvant therapy of locally advanced primary breast cancer and locally advanced esophageal cancer.

Treatment evaluation of colorectal cancer metastatic to the liver by PET demonstrates different approaches but has little potential for clinical impact. Semiquantitative assessment of FDG uptake by means of SUV appears to be sufficiently accurate for assessment of uptake in serial studies of the same patient under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nygren P, SBU group. Swedish Council on Technology Assessment in Health Care. What is cancer chemotherapy? Acta Oncol 2001;40:166–174.

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization. WHO handbook for reporting results of cancer treatment. Geneva: World Health Organization, 1979:48.

    Google Scholar 

  3. Therasse P, Arbuck SC, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205–216.

    Article  PubMed  CAS  Google Scholar 

  4. Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG-PET findings. Am J Radiol 2004;183:1619–1628.

    Google Scholar 

  5. Mazumdar M, Smith A, Schwartz LH. A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol 2004;57:358–365.

    Article  PubMed  Google Scholar 

  6. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999;17:1244–1253.

    PubMed  CAS  Google Scholar 

  7. Hasenclever D, Diehl V, for the International Prognostic Factors Project on Advanced Hodgkin’s Disease. A prognostic score for advanced Hodgkin’s disease. N Engl J Med 1998;339:1506–1514.

    Article  PubMed  CAS  Google Scholar 

  8. Ng AK, Bernardo MV, Weller E, et al. Second malignancy after Hodgkin disease treated with radiation therapy with or without chemotherapy: long-term risks and risk factors. Blood 2002;100:1989–1996.

    Article  PubMed  CAS  Google Scholar 

  9. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999;35(13):1773–1782.

    Article  PubMed  CAS  Google Scholar 

  10. Girardier L, Seydoux J. Neural control of brown adipose tissue. In: Trayburn P, Nicholls D, editors. Brown Adipose Tissue. London: Arnold, 1986:123–147.

    Google Scholar 

  11. Anholt R, De Souza E, Oster-Granite M, Snyder S. Peripheral-type benzodiazepine receptors: autoradiographic localization in wholebody sections of neonatal rats. J Pharmacol Exp Ther 1985;233:517–526.

    PubMed  CAS  Google Scholar 

  12. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996;14:700–708.

    PubMed  CAS  Google Scholar 

  13. Jansson T, Westlin JE, Ahlstrom H, et al. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13:1470–1477.

    PubMed  CAS  Google Scholar 

  14. Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–4471.

    PubMed  CAS  Google Scholar 

  15. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. Positron emission tomography predicts prognosis after one cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002;43:1018–1027.

    PubMed  Google Scholar 

  16. Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689–1695.

    PubMed  CAS  Google Scholar 

  17. Bassa P, Kim E, Inoue T, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med. 1996;37:931–938.

    PubMed  CAS  Google Scholar 

  18. Fukuda K, Kojiro M, Chiu Jen-Fu. Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma tissue: apoptosis or necrosis? Am J Pathol 1993;142:935–946.

    PubMed  CAS  Google Scholar 

  19. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239–257.

    PubMed  CAS  Google Scholar 

  20. Wang TH, Wang HS, Soong YK, et al. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer (Phila) 2000;88:2619–2628.

    Article  PubMed  CAS  Google Scholar 

  21. Warburg O. On respiratory impairment in cancer cells. Science 1956;124:269–270.

    PubMed  CAS  Google Scholar 

  22. Suit HD. Clinical radiation biology. In: Choi NC, Grillo HC, editors. Thoracic Oncology. New York: Raven Press, 1983:51–58.

    Google Scholar 

  23. Thompson LH, Suit HD. Proliferation kinetics of x-irradiation mouse L cells studies with time-lapse photography. Int J Radiat Biol 1969;15:347–363.

    CAS  Google Scholar 

  24. Sinclair WK. X-ray induced heritable damage (small colony formation) in cultured mammalian cells. Radiat Res 1964;21:584–611.

    PubMed  CAS  Google Scholar 

  25. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001;19:2797–2803.

    PubMed  CAS  Google Scholar 

  26. Nygren P, Glimelius B. The Swedish Council on Technology Assessment in Health Care. SBU report on cancer chemotherapy. Project objectives, the working process, key definitions and general aspects on cancer trial methodology and interpretation. Acta Oncol 2001;40:155–165.

    Article  PubMed  CAS  Google Scholar 

  27. de Hemricourt E, De Boeck K, Hilte F, Abib A, Kockx M, Vandevivere J, De Bock R. Sarcoidosis and sarcoid-like reaction following Hodgkin’s disease. Report of two cases. Mol Imaging Biol 2003;5(1):15–19.

    Article  PubMed  Google Scholar 

  28. Koss MN. Pulmonary lymphoid disorders. Semin Diagn Pathol 1995;12:158–171.

    PubMed  CAS  Google Scholar 

  29. Marom EM, McAdams HP, Butnor KJ, Coleman RE. Positron emission tomography with fluoro-2-deoxy-D-glucose (FDG-PET) in the staging of post transplant lymphoproliferative disorder in lung transplant recipients. J Thorac Imaging 2004;19:74–78.

    Article  PubMed  Google Scholar 

  30. van der Hoeven JJ, Krak NC, Hoekstra OS, et al. 18F-2-Fluoro-2-deoxy-D-glucose positron emission tomography in staging of locally advanced breast cancer. J Clin Oncol 2004;22:1253–1259.

    Article  PubMed  CAS  Google Scholar 

  31. Duhrsen U, Villeval JL, Boyd J, et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 1988;72:2074–2081.

    PubMed  CAS  Google Scholar 

  32. Wang GJ, Cai L. Relatively low-dose cyclophosphamide is likely to induce apoptotic cell death in rat thymus through Fas/Fas ligand pathway. Mutat Res 1999;427:125–133.

    PubMed  CAS  Google Scholar 

  33. Rafla S, Rotman M. Effects of radiation on cells In: Rafla S, Rotman M, editors. Introduction to Radiotherapy. St. Louis: Mosby, 1974:51–55.

    Google Scholar 

  34. Higashi K, Clavo AC, Wahl RL et al. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 1993;34:773–779.

    PubMed  CAS  Google Scholar 

  35. Whitmore GF, Till JE, Gwatkin RB, Siminovitch L, Graham AF. Increase of cellular constituents in X-irradiated mammalian cells. Biochim Biophys Acta 1958;30:583–590.

    Article  PubMed  CAS  Google Scholar 

  36. Song CW, Sung JH, Clement JJ, Levitt SH. Vascular changes in neuroblastoma of mice following x-irradiation. Cancer Res 1974;34:2344–2350.

    PubMed  CAS  Google Scholar 

  37. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine-18 fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissue studied by autoradiography. J Nucl Med 1992;33:1972–1980.

    PubMed  CAS  Google Scholar 

  38. Brown RS, Leung JY, Kison PV, et al. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40:556–565.

    PubMed  CAS  Google Scholar 

  39. Avril N, Menzel M, Dose J, et al. Glucose metabolism of breast cancer assessed by 18F-FDG-PET: histologic and immunohistochemical tissue analysis. J Nucl Med 2001;42:9–16.

    PubMed  CAS  Google Scholar 

  40. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32(8):1485–1490.

    PubMed  CAS  Google Scholar 

  41. Collins BT, Gardner LJ, Verma AK, Lowe VJ, Dunphy FR, Boyd JH. Correlation of fine needle aspiration biopsy and fluoride-18 fluorodeoxyglucose positron emission tomography in the assessment of locally recurrent and metastatic head and neck neoplasia. Acta Cytol 1998;42:1325–1329.

    PubMed  CAS  Google Scholar 

  42. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies for fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32:1485–1490.

    PubMed  CAS  Google Scholar 

  43. Brun E, Kjellen E, Tennvall J, et al. FDG-PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127–135.

    Article  PubMed  Google Scholar 

  44. Conessa C, Clement P, Foehrenbach H, et al. Value of positron-emission tomography in the post-treatment follow-up of epider-moid carcinoma of the head and neck. Rev Laryngol Otol Rhinol 2001;122:253–258.

    CAS  Google Scholar 

  45. Choi YW, Munden RF, Erasmus JJ, Park KJ, Chung WK, Jeon SC, Park CK. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics 2004;24:985–997.

    PubMed  Google Scholar 

  46. Senan S, De Ruysscher D, Giraud P, Mirimanoff R, Budach V. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. Radiother Oncol 2004;71:139–146.

    Article  PubMed  Google Scholar 

  47. Theuws JC, Seppenwoolde Y, Kwa SL, et al. Changes in local pulmonary injury up to 48 months after irradiation for lymphoma and breast cancer. Int J Radiat Oncol Biol Phys 2000;47:1201–1208.

    Article  PubMed  CAS  Google Scholar 

  48. Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 1983;41:283–288.

    Article  PubMed  CAS  Google Scholar 

  49. Clayman L. Clinical controversies in oral and maxillofacial surgery: Part two. Management of dental extractions in irradiated jaws: a protocol without hyperbaric oxygen therapy. J Oral Maxillofac Surg 1997;55:275–281.

    Article  PubMed  CAS  Google Scholar 

  50. Liu SH, Chang JT, Ng SH, Chan SC, Yen TC. False positive fluorine-18 fluorodeoxy-D-glucose positron emission tomography finding caused by osteoradionecrosis in a nasopharyngeal carcinoma patient. Br J Radiol 2004;77:257–260.

    Article  PubMed  Google Scholar 

  51. Dunn BK, Wickerham DL, Ford LG. Prevention of hormone-related cancers: breast cancer. J Clin Oncol 2005;23(2):357–367.

    Article  PubMed  Google Scholar 

  52. Reddel RR, Sutherland RL. Tamoxifen stimulation of human breast cancer cell proliferation in vitro: a possible model for tamoxifen tumour flare. Eur J Cancer Clin Oncol 1984;20:1419–1424.

    Article  PubMed  CAS  Google Scholar 

  53. Noguchi S, Motomura K, Inaji H, et al. Up-regulation of estrogen receptor by tamoxifen in human breast cancer. Cancer (Phila) 1993;71:1266–1272.

    Article  PubMed  CAS  Google Scholar 

  54. Coleman RE, Mashiter G, Whitaker KB, et al. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 1988;29:1354–1359.

    PubMed  CAS  Google Scholar 

  55. Vogel CL, Schoenfelder J, Shemano I, et al. Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol 1995;13:1123–1128.

    PubMed  CAS  Google Scholar 

  56. van Schelven WD, Pauwels EKJ. The flare phenomenon: far from fair and square. Eur J Nucl Med 1994;21:377–380.

    Article  PubMed  Google Scholar 

  57. Campbell FC, Blamey RW, Elston CW. Quantitative oestradiol receptor values in primary breast cancer and response of metastases to endocrine therapy. Lancet 1981;1:1317–1319.

    Article  Google Scholar 

  58. Dehdashti F, Flanagan FL, Mortimer JE. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999;26:51–56.

    Article  PubMed  CAS  Google Scholar 

  59. McGuire AH, Dehdashti F, Siegel BA. Positron tomographic assessment of 16alpha-[F-18]-fluoro-17beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–1531.

    PubMed  CAS  Google Scholar 

  60. Inoue T, Kim EE, Wallace S, Yang DJ, Wong FC, Bassa P, et al. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother Radiopharm 1996;11(4):235–245

    Article  PubMed  CAS  Google Scholar 

  61. Ottaiano A, Mollo E, Di Lorenzo G, Pisano C, et al. Prospective clinical trials of biotherapies in solid tumors: a 5-year survey. Cancer Immunol Immunother 2005;54:44–50.

    Article  PubMed  Google Scholar 

  62. Press OW. Physics for practitioners: the use of radiolabeled monoclonal antibodies in B-cell non-Hodgkin’s lymphoma. Semin Hematol 2000;37:2–8.

    Article  PubMed  CAS  Google Scholar 

  63. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin’s lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG-PET. J Nucl Med 2000;41:999–1005.

    PubMed  CAS  Google Scholar 

  64. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJ, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27(6):731–743.

    Article  PubMed  CAS  Google Scholar 

  65. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 2000;27(7):647–655.

    Article  PubMed  CAS  Google Scholar 

  66. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996;14:700–708.

    PubMed  CAS  Google Scholar 

  67. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189(3):847–850.

    PubMed  CAS  Google Scholar 

  68. Kim CK, Gupta NC. Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun 1996;17(10):890–894.

    PubMed  CAS  Google Scholar 

  69. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35(8):1308–1312.

    PubMed  CAS  Google Scholar 

  70. Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995;36(10):1836–1839.

    PubMed  Google Scholar 

  71. Langen KJ, Braun U, Rota KE, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355–359.

    PubMed  CAS  Google Scholar 

  72. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer: a PET study. J Nucl Med 1993;34(1):1–6.

    PubMed  CAS  Google Scholar 

  73. Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-Dglucose in rodents with mammary carcinoma. Radiology 1992;183(3):643–647.

    PubMed  CAS  Google Scholar 

  74. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.

    PubMed  CAS  Google Scholar 

  75. Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. Simplified measurement of deoxyglucose utilization rate. J Nucl Med 1996;37:950–955.

    PubMed  CAS  Google Scholar 

  76. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG-PET. J Nucl Med 1999;40:1771–1777.

    PubMed  CAS  Google Scholar 

  77. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, Schwaiger M. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003;21:2651–2657.

    Article  PubMed  CAS  Google Scholar 

  78. Minn H, Leskinen-Kallio S, Lindholm P, Bergman J, Ruotsalainen U, Teras M, et al. [18F]Fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Comput Assist Tomogr 1993;17:115–123.

    Article  PubMed  CAS  Google Scholar 

  79. Kole AC, Niewig OE, Pruim J, Paans AM, Plukker JT, Hoekstra O, et al. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and [11C]tyrosine PET. J Nucl Med 1997;38:692–696.

    PubMed  CAS  Google Scholar 

  80. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993;11(11):2101–2111.

    PubMed  CAS  Google Scholar 

  81. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 2000;27(7):647–655.

    Article  PubMed  CAS  Google Scholar 

  82. Kessler RM, Ellis JR Jr, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984;8:514–522.

    Article  PubMed  CAS  Google Scholar 

  83. Brandt L, Kimby E, Nygren P, Glimelius B. A systematic overview of chemotherapy effects in Hodgkin’s disease. Acta Oncol 2001;40:185–197.

    PubMed  CAS  Google Scholar 

  84. Coiffier B, Gisselbrecht C, Vose JM, et al. prognostic factors in aggressive malignant lymphomas. Description and validation of prognostic index that could identify patients requiring a more intensive therapy. J Clin Oncol 1991;9:211–219.

    PubMed  CAS  Google Scholar 

  85. Brandt L, Kimby E, Nygren P, Glimelius B, et al. A systematic overview of chemotherapy effects in indolent non-Hodgkin’s lymphoma. Acta Oncol 2001;40(2–3):213–223.

    Article  PubMed  CAS  Google Scholar 

  86. Sorenson S, Glimelius B, Nygren P, et al. A systematic overview of chemotherapy effects in non-small cell lung cancer. Acta Oncol 2001;40(2–3):327–339.

    Article  PubMed  CAS  Google Scholar 

  87. Martini N, Kris MG, Flehinger BJ, et al. Preoperative chemotherapy for stage IIIa (N2) lung cancer: the Sloan-Kettering experience with 136 patients. Ann Thorac Surg 1993;551365–1373.

    Article  PubMed  CAS  Google Scholar 

  88. Sorenson S, Glimelius B, Nygren P. A systematic overview of chemotherapy effects in non-small cell lung cancer. Acta Oncol 2001;40:327–339.

    Article  PubMed  CAS  Google Scholar 

  89. Sekine I, Tamura T, Kunitoh H, et al. Progressive disease rate as a surrogate endpoint of phase II trials for non-small-cell lung cancer. Ann Oncol 1999;10:731–733.

    Article  PubMed  CAS  Google Scholar 

  90. Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 2004;60:412–418.

    Article  PubMed  Google Scholar 

  91. Bray F, McCarron P, Parkin DM. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res 2004;6:229–239.

    Article  PubMed  Google Scholar 

  92. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. Early Breast Cancer Trialists’ Collaborative Group. N Engl J Med 1995;333:1444–1455.

    Google Scholar 

  93. Schwartz GF, Hortobagyi GN. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennslyvania. Cancer (Phila) 2004;100:2512–2532.

    Article  PubMed  Google Scholar 

  94. Smith IC, Heys SD, Hutcheon AW. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 2002;20:1456–1466.

    Article  PubMed  CAS  Google Scholar 

  95. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin 1997;47:5–27.

    PubMed  CAS  Google Scholar 

  96. Wanebo HJ, Chougule P, Akerley WL III, et al. Preoperative chemoradiation coupled with aggressive resection as needed ensures near total control in advanced head and neck cancer. Am J Surg 1997;174:518–522.

    Article  PubMed  CAS  Google Scholar 

  97. Wendt TG, Grabenbauer GG, Rodel CM, et al. Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. J Clin Oncol 1998;16:1318–1324.

    PubMed  CAS  Google Scholar 

  98. Posner M. Sequential chemotherapy for the curative treatment of squamous cell cancer of the head and neck: a new paradigm. Oncol Spectrums 2001;2:193–202.

    Google Scholar 

  99. Scantz SP, Harrison LB, Forastiere AA. Tumors of the nasal cavity and paranasal sinuses, nasopharynx, oral cavity and oropharynx. In: Devita VT, Helmann S, Rosenberg SA, editors. Cancer Principles and Practice of Oncology. Philadelphia: Lippincott-Raven, 1997:741–801.

    Google Scholar 

  100. Geh JI, Crellin AM, Glynne-Jones R. Preoperative (neoadjuvant) chemoradiotherapy in oesophageal cancer. Br J Surg 2001;88:338–356.

    Article  PubMed  CAS  Google Scholar 

  101. Law S, Fok M, Chow S, Chu KM, Wong J. Preoperative chemotherapy versus surgical therapy alone for squamous cell carcinoma of the esophagus: a prospective randomized trial. J Thorac Cardiovasc Surg 1997;114:210–217.

    Article  PubMed  CAS  Google Scholar 

  102. Posner MC, Gooding WE, Lew JL, et al. Complete 5-year follow-up of a prospective phase II trial of preoperative chemoradiotherapy for esophageal cancer. Surgery (St. Louis) 2001;130:620–628.

    Article  PubMed  CAS  Google Scholar 

  103. Kavanagh B, Anscher M, Leopold K, et al. Patterns of failure following combined modality therapy for esophageal cancer, 1984–1990. Int J Radiat Oncol Biol Phys 1992;24:633–642.

    PubMed  CAS  Google Scholar 

  104. Gill PG, Denham JW, Jamieson GG, et al. Pattern of treatment failure and prognostic factors associated with the treatment of esophageal carcinoma with chemotherapy and radiotherapy either as sole treatment followed by surgery. J Clin Oncol 1992;10:1037–1043.

    PubMed  CAS  Google Scholar 

  105. Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg 2000;120:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  106. Chu KC, Tarone RE, Chow WH, et al. Temporal patterns in colorectal cancer incidence, survival and mortality from 1950 through 1960. J Natl Cancer Inst 1994;86:997–1006.

    PubMed  CAS  Google Scholar 

  107. Bertino JR. Biomodulation of 5-fluorouracil with antifolates. Semin Oncol 1997;24(suppl 18):S18-52–S18-56.

    Google Scholar 

  108. Reimer P, Ruckle-Lanz H. New therapeutic options in chemotherapy of advanced colorectal cancer (in German). Med Klin 2001;96:593–598.

    CAS  Google Scholar 

  109. Schlag PM, Amthauer H, Stroszczynski C, Felix R. Influence of positron emission tomography on surgical therapy planning in recurrent colorectal cancer. Chirurg 2001;72:995–1002.

    Article  PubMed  CAS  Google Scholar 

  110. Bosl GJ, Sheinfeld J, Bajorin DF, Motzer RJ. Cancer of the testis. In: Devita VTJ, Helmann S, Rosenberg SA, editors. Cancer Principles and Practice of Oncology. Philadelphia: Lippincott-Raven, 1997:1397–1425.

    Google Scholar 

  111. Foster RS, Nichols CR. Testicular cancer: what’s new in staging, prognosis, and therapy. Oncology 1999;13:1689–1694.

    PubMed  CAS  Google Scholar 

  112. Einhorn LH. Curing metastatic testicular cancer. Proc Natl Acad Sci U S A 2002;99:4592–4595.

    Article  PubMed  CAS  Google Scholar 

  113. Bajorin DF, Sarosdy MF, Pfister DG, et al. Randomized trial of etoposide and cisplatin versus etoposide and carboplatin in patients with good-risk germ cell tumors: a multiinstitutional study. J Clin Oncol 1993;11:598–606.

    PubMed  CAS  Google Scholar 

  114. Bhatia S, Abonour R, Porcu P, et al. High-dose chemotherapy as initial salvage chemotherapy in patients with relapsed testicular cancer. J Clin Oncol 2000;18:3346–3351.

    PubMed  CAS  Google Scholar 

  115. McGuire WP, Brady MF, Ozols RF. The Gynecologic Oncology Group experience in ovarian cancer. Ann Oncol 1999;10(suppl 1):29–34.

    Article  PubMed  Google Scholar 

  116. Ozols RF, Schwartz PE, Eifel PJ. Ovarian cancer, fallopian tube carcinoma, and peritoneal carcinoma. In: Devita VT, Helmann S, Rosenberg SA, eds. Cancer Principles and Practice of Oncology. Philadelphia: Lippincott-Raven, 1997:1502–1539.

    Google Scholar 

  117. Wahl RL, Towsend DW, Meltzer CC, Von Schulthess GK, Fishman EK. CT/PET fusion imaging. Radiology 2002;225:42 (abstract).

    Google Scholar 

  118. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med 2002;29:1393–1398.

    Article  Google Scholar 

  119. Kamel EM, Goerres GW, Burger C, von Schulthess GK, Steinert HC. Recurrent laryngeal nerve palsy in patients with lung cancer. Detection with PET/CT image fusion: report of six cases. Radiology 2002;224:153–156.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kostakoglu, L., Valk, P.E. (2006). Assessment of Treatment Response by FDG-PET. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_25

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics