Skip to main content

Tomography Using the Transmission Electron Microscope

  • Chapter
Handbook of Microscopy for Nanotechnology

6. Conclusions

It is evident that electron tomography offers a means to determine the three dimensional structure and composition of many different mateials at the nanometre level. In general, tomography using BF TEM for materials science applications will not yield true reconstructions because of the coherent nature of the scattering process seen in such images. BF images contain contrast that does not satisfy the projection requirement for tomography. Incoherent signals, such as those used to form STEM HAADF images or core-loss EFTEM images do satisfy the projection requirement, at least within certain limits. Further, by using these imaging techniques, it is possible to simultaneously record three-dimensional compositional information, either indirectly through the atomic number dependence of HAADF imaging or directly, by choosing a window that corresponds to a energy loss (electronic transition) within a particular atomic species. This one-to-one correspondence of structure and composition in three dimensions should give the physical scientist a very powerful method to analyse nanoscale structures and devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. E. Drexler, Nanosystems: molecular machinery, manufacturing, and computation, Wiley Interscience (1992).

    Google Scholar 

  2. J. C. H. Spence, High Resolution Electron Microscopy, Oxford University Press (2003).

    Google Scholar 

  3. A. Crewe, Rep. Prog Phys. 43 (1980) 621.

    Article  CAS  ADS  Google Scholar 

  4. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: a Handbook for Materials Scientists, Plenum Press (1996).

    Google Scholar 

  5. B. Hudson J. Microscopy 98 (1972) 396.

    Google Scholar 

  6. N. Unwin and R. Henderson J Molec Biol 94 (1975) 425.

    Article  PubMed  CAS  Google Scholar 

  7. B. Bottcher, S. A. Wynne and R. A. Crowther, Nature 368 (1997) 88.

    Article  Google Scholar 

  8. I. S. Gabashvili, R. K. Agrawal, C. M. T. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank and P. Penczek, Cell 100 (2000) 537.

    Article  PubMed  CAS  Google Scholar 

  9. B. J. Marsh, D. N. Mastronarde, K. F. Buttle, K. E. Howell and J. R. McIntosh, Proc. Nat. Acad. Sci., USA., 98 (2001) 2399.

    Article  CAS  ADS  Google Scholar 

  10. W. Kuhlbrandt Q. Rev Biophysics 25 (1992) 1.

    Article  CAS  Google Scholar 

  11. R. Matadeen, A. Patwardhan, B. Gowen, E.V. Orlova, T. Pape, M. Cuff, F. Mueller, R. Brimacombe and M. van Heel, Struct Fold Design 7 (1999) 1575.

    Article  CAS  Google Scholar 

  12. W. Baumeister, R. Grimm and J. Walz, Trends Cell Biol 9 (1999) 81.

    Article  PubMed  CAS  Google Scholar 

  13. J. Radon, Ber. Verh. K. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917) 262.

    MATH  Google Scholar 

  14. H. Cramer and H. Wold, J. London Math. Soc. 11 (1936) 290.

    Article  MATH  Google Scholar 

  15. J. Banhart, Progr. Mat. Sci. 46 (2001) 559.

    Article  CAS  Google Scholar 

  16. T. Hirano, K. Usami, Y. Tanaka, C. Masuda, J. Mater. Res. 10 (1995) 381.

    Article  CAS  ADS  Google Scholar 

  17. Weierstall, U., Chen, Q., Spence, J. C. H., Howells, M. R., Isaacson, M. & Panepucci, R. R. Ultramicroscopy 90, 171–195 (2002).

    Article  CAS  Google Scholar 

  18. M. K. Miller, Atom-Probe Tomography: Analysis at the Atomic Level, Kluwer Academic/Plenum Press, New York (2000).

    Google Scholar 

  19. J. Mardinly Microsc Microanal 7(suppl 2) (2001) 510.

    Google Scholar 

  20. R. E. Dunin-Borkowski, M. R. McCartney, B. Kardynal, S. S. P. Parkin, M. R. Scheinfein and David J. Smith J. Microsc. 200 (2000), 187.

    Article  PubMed  CAS  Google Scholar 

  21. V. Stolojan, R. E. Dunin-Borkowski, M. Weyland, and P. A. Midgley, Inst. Phys. Conf. Series. 168 (2001) 243.

    CAS  Google Scholar 

  22. J. Joardar, S. W. Kim and S. Kang Materials and Manufacturing Process 17 (2002) 567.

    Article  CAS  Google Scholar 

  23. J. M. Thomas, in: Inorganic Chemistry: Towards the 21 st century (ed. M. H. Chisholm), A. C. S. Publication 211 (1983) 445.

    Google Scholar 

  24. R. N. Bracewell, Aust. J. Phys. 9 (1956) 297.

    MathSciNet  ADS  Google Scholar 

  25. A. M. Cormack J. Appl. Phys. 34 (1963) 2722.

    Article  MATH  Google Scholar 

  26. G. N. Hounsfield, A method and apparatus for examination of a body by radiation such as X or gamma radiation, The Patent Office, London: England (1972).

    Google Scholar 

  27. G. L. Brownell, C. A. Burnham, B. Hoop, D. E. Bohning, Proceedings of the Symposium on Dynamic Studies with Radioisotopes in Medicine, Rotterdam, 190, IAEA, Vienna (1971).

    Google Scholar 

  28. K. Baba, K. Satoh, S. Sakamoto, T. Okai and S. Ishii, J. Perinat Med. 17 (1989) 19.

    Article  PubMed  CAS  Google Scholar 

  29. D. I. Hoult J. Magn. Reson. 33 (1979) 183.

    CAS  Google Scholar 

  30. D. Zhao and J. R. Kayal Current Science 79 (2000) 1208.

    Google Scholar 

  31. P. Reimers, A. Kettschau and J. Goebbels. NDT International, 23 (1990) 255.

    Article  Google Scholar 

  32. S. R. Deans, The Radon transform and some of its applications, Wiley, New York, Chichester (1983).

    Google Scholar 

  33. D. J. de Rosier, A. Klug, Nature 217 (1968) 130.

    Article  Google Scholar 

  34. W. Hoppe and R. Hegerl in: Computer Processing of Electron Microscope Images (Ed. P.W. Hawkes), Springer-Verlag, Berlin, Heidelberg, New York (1980).

    Google Scholar 

  35. W. Hoppe, R. Langer, G. Knesch and C. Poppe, Naturwissenschaften 55 (1968) 333.

    Article  PubMed  CAS  Google Scholar 

  36. R. G. Hart, Science 159 (1968) 1464.

    Article  PubMed  CAS  ADS  Google Scholar 

  37. R. A., Crowther, D. J. de Rosier and A. Klug, Proc. Roy. Soc. Lond. A. 317 (1970) 319.

    Article  ADS  Google Scholar 

  38. G. N. Ramachandran and A.V. Lakshminarayanan, Proc. Nat. Acad. Sci. 68 (1971) 2236.

    Article  PubMed  CAS  MathSciNet  ADS  Google Scholar 

  39. R., Gordon, R. Bender and G. T. Herman, J. Theor. Biol. 29 (1970) 471.

    Article  PubMed  CAS  Google Scholar 

  40. P. Gilbert, J. Theor. Biol. 36 (1972) 105.

    Article  PubMed  CAS  Google Scholar 

  41. P. K. Luther, in: Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, J. Frank (Ed.) pp. 39–60, Plenum Press: New York; London. (1992).

    Google Scholar 

  42. C. E. Hsieh, M. Marko, J. Frank and C. Mannella, J Structural Biol 138 (2002) 63.

    Article  Google Scholar 

  43. G. A. Perkins, C. W. Renken, J. Y. Song, T. G. Frey, S. J. Young, S. Lamont, M. E. Martone, S. Lindsey and M. H. Ellisman J. Structural Biol 120 (1997) 219.

    Article  CAS  Google Scholar 

  44. P. R. Smith, T. M. Peters and R. H. T. Bates, J. Phys. A: Math., Nucl. Gen. 6 (1973) 361.

    Article  MATH  ADS  Google Scholar 

  45. Henderson R, Baldwin J. M., Ceska T. A., Beckman E., Zemlin F. and Downing K. J Mol. Biol. 213 (1990) 899.

    Article  PubMed  CAS  Google Scholar 

  46. B. K. Vainshtein, Soviet Physics-Crystallography 15 (1970) 781.

    Google Scholar 

  47. M. Radermacher, in Electron tomography: three-dimensional imaging with the transmission electron microscope, J. Frank (Ed.) pp. 91–116, Plenum Press, New York/London (1992).

    Google Scholar 

  48. G. T. Herman, Image Reconstruction From Projections, The Fundamentals of Computerised Tomography, Academic Press, New York (1980).

    Google Scholar 

  49. N. Grigorieff J. Mol Biol. 277 (1998) 1033.

    Article  PubMed  CAS  Google Scholar 

  50. H. Nyquist, Trans. AIEE, 47 (1928), 617.

    Google Scholar 

  51. P. F. C. Gilbert, Proc. R. Soc. Lond. B. 182 (1972) 89.

    Article  PubMed  CAS  ADS  Google Scholar 

  52. M. Radermacher, T. Wagenknecht, A. Verschoor and J. Frank, J. Microscopy 146 (1987) 112.

    Google Scholar 

  53. R. A. Crowther and A. Klug, J. Theor. Biol. 32 (1971) 199.

    Article  PubMed  CAS  Google Scholar 

  54. S. H. Bellman, R. Bender, R. Gordon and J. E. Rowe, J. Theor. Biol. 32 (1971) 205.

    Article  PubMed  CAS  Google Scholar 

  55. I. M. Sezan, Ultramicroscopy 40 (1992) 55.

    Article  Google Scholar 

  56. R. W. Gerchberg and W.O. Saxton, Optik 34 (1971) 275.

    Google Scholar 

  57. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies, Academic Press, San Diego (1996).

    Google Scholar 

  58. M. Barth, R. K. Bryan and R. Hegerl, Ultramicroscopy 31 (1989) 365.

    Article  Google Scholar 

  59. N. A. Farrow and F. P. Ottensmeyer, Ultramicroscopy 31 (1989) 275.

    Article  Google Scholar 

  60. M. C. Lawrence, M. A. Jaffer and B. T. Sewell, Ultramicroscopy 31 (1989) 285.

    Article  PubMed  CAS  Google Scholar 

  61. U. Skoglund and L. Ofverstedt, J. Struct. Biol. 117 (1996) 173.

    Article  PubMed  CAS  Google Scholar 

  62. K. Dierksen, D. Typke, R. Hegerl, A. J. Koster, and W. Baumeister, Ultramicroscopy 40 (1992) 71.

    Article  Google Scholar 

  63. U. Ziese, A. H. Janssen, J. L. Murk, W. J. C. Geerts, T. Krift, A. J. Verkleij and A. J. Koster, J. Microscopy 205 (2002) 187.

    Article  CAS  Google Scholar 

  64. M. Otten, personal communication (2003).

    Google Scholar 

  65. U. Ziese, C. Kubel, A. Verkleij, A. Koster, J Struct Biol. 138 (2002) 58.

    Article  PubMed  CAS  Google Scholar 

  66. M. C. Lawrence, in: Electron tomography: three-dimensional imaging with the transmission electron microscope, J. Frank (Ed.) pp. 197–204, Plenum Press, New York/London (1992).

    Google Scholar 

  67. J. Frank and B. F. McEwen, in: Electron tomography: three-dimensional imaging with the transmission electron microscopy J. Frank (Ed.) pp. 205–214, Plenum Press, New York/London (1992).

    Google Scholar 

  68. A. J. Koster, R. Grimm, D. Typke, R. Hegerl, A. Stoschek, J. Walz and W. Baumeister, J. Struct. Biol. 120 (1997) 276.

    Article  PubMed  CAS  Google Scholar 

  69. R. Guckenberger, Ultramicroscopy 9 (1982) 167.

    Article  Google Scholar 

  70. J. C. Russ, The Image Processing Handbook, 3 rd edition, IEEE Press, Piscataway (2000).

    Google Scholar 

  71. M. Radermacher and W. Hoppe, Proc. 7th European Congr. Electron Microscopy. Den Haag (1980) 132.

    Google Scholar 

  72. P. A. Midgley and M. Weyland Ultramicroscopy 96 (2003) 413.

    Article  PubMed  CAS  Google Scholar 

  73. E. A. Fischione Inc. Model 2020 Advanced Tomography Holder.

    Google Scholar 

  74. D. N. Mastronarde. J. Struct. Biol. 120 (1997) 343.

    Article  PubMed  CAS  Google Scholar 

  75. P. Penczek, M. Marko, K. Buttle, J. Frank. Ultramicroscopy. 60 (1995) 393.

    Article  PubMed  CAS  Google Scholar 

  76. J. Carazo, in: Electron tomography: three-dimensional imaging with the transmission electron microscope, J. Frank (Ed.) pp. 117–166, Plenum Press, New York/London (1992).

    Google Scholar 

  77. P. A. Penczek J Struct. Biol. 138 (2002) 34.

    Article  PubMed  Google Scholar 

  78. P. W. Hawkes, in: Electron tomography: three-dimensional imaging with the transmission electron microscope, J. Frank (Ed.) pp. 17–38, Plenum Press, New York/London (1992).

    Google Scholar 

  79. A. J. Koster, U. Ziese, A. J. Verkleij, A. H. Janssen, and K. P. de Jong, J. Phys. Chem. B, 104 (2000) 9368.

    Article  CAS  Google Scholar 

  80. P. A. Midgley, M. Weyland J. M. Thomas and B. F. G. Johnson, Chem. Commun. 18 (2001) 907.

    Article  Google Scholar 

  81. G. Mobus and B. J. Inkson, Appl. Phys. Lett. 79 (2001) 1369.

    Article  CAS  ADS  Google Scholar 

  82. S. J. Pennycook, Ultramicroscopy 30 (1989) 58.

    Article  Google Scholar 

  83. D. A. Muller, B. Edwards, E. J. Kirkland, J. Silcox, Ultramicroscopy, 86 (2001), 371.

    Article  PubMed  CAS  Google Scholar 

  84. A. Howie, J. Microscopy, 177 (1979) 1.

    MathSciNet  Google Scholar 

  85. J. Cowley, this volume.

    Google Scholar 

  86. E. J. Kirkland, R. F. Loane, and J. Silcox, Ultramicroscopy 23 (1987) 77.

    Article  Google Scholar 

  87. J. W. Steeds in: Quantitative Electron Microscopy J. C. Chapman and A. J. Craven (Eds), SUSSP, Edinburgh (1984).

    Google Scholar 

  88. T. J. V. Yates, M. Weyland, D. Zhi, R. E. Dunin-Borkowski and P. A. Midgley (2003), Inst. Phys. Conf. Series (MSM2003), in press.

    Google Scholar 

  89. A. Beorchia, L. Heloiot, M. Menager, H. Kaplan, D. Ploton J. Microsc. 170 (1993) 247.

    PubMed  CAS  Google Scholar 

  90. D. Ozkaya, W. Z. Zhou, J. M. Thomas, P. A. Midgley, V. J. Keast and S. Hermans, Catalysis Letters 60 (1999) 113.

    Article  CAS  Google Scholar 

  91. J. H. Sinfelt, Bimetallic Catalysts, J. Wiley, New York (1983); J. M. Thomas, Angewandte Chemie-International Edition 38 (1999) 3589.

    Google Scholar 

  92. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar and P. A. Midgley Accounts of Chemical Research 36 (2003) 20.

    Article  PubMed  CAS  Google Scholar 

  93. IDL v.5.1, Research Systems, 2995 Wilderness Place, Boulder, Colorado 80301, 1988.

    Google Scholar 

  94. C. F. Blanford and C. B. Carter Microscopy and Microanalysis 9 (2003) 245.

    Article  PubMed  CAS  ADS  Google Scholar 

  95. Meldrum, F. C., Heywood, B. R., Mann, S., Frankel, R. B. & Bazylinski, D. A. Proc. R. Soc. London Ser. B 251 (1993) 231.

    Article  ADS  Google Scholar 

  96. K. L. Thomas-Kerpta, D. A. Bazylinski, J. L. Kirschvink, S. J. Clemett, D. S. McKay, S. J. Wentworth, H. Vali, E. K. Gibson, and C. S. Romanek, Geochimica Et Cosmochimica Acta 64 (2000) 4049.

    Article  ADS  Google Scholar 

  97. P. R. Buseck, R. E. Dunin-Borkowski, B. Devourard, R. B. Frankel, M. R. McCartney, P. A. Midgley, M. Posfai and M. Weyland, Proc. Nat. Acad. Sci. 98 (2001) 13490.

    Article  PubMed  CAS  ADS  Google Scholar 

  98. D. C. Golden, D. W. Ming, C. S. Schwandt, H. V. Lauer, R. A. Socki, R. V. Morris, G. E. Lofgren, and G. A. McKay, American Mineralogist 86 (2001) 956.

    Google Scholar 

  99. D. J. Barber and E. R. D. Scott. Proc. Nat. Acad. Sci 99 (2002) 6556.

    Article  PubMed  CAS  ADS  Google Scholar 

  100. Department of Materials Science and Metallurgy Electron Microscopy Group: http://wwwhrem.msm.cam.ac.uk/research/CETP/electron_tomography.html

    Google Scholar 

  101. L. Reimer, Energy-Filtering Transmission Electron Microscopy, Springer-Verlag, Berlin (1995).

    Google Scholar 

  102. B. Freitag and W. Mader, J. Microsc. 194 (1999) 42.

    Article  PubMed  CAS  Google Scholar 

  103. W. Grogger, B. Schaffer, K. M. Krishnan and F. Hofer Ultramicroscopy 96 (2003) 481.

    Article  PubMed  CAS  Google Scholar 

  104. P. J. Thomas and P. A. Midgley, Ultramicroscopy 88 (2001) 179, P. J. Thomas and P. A. Midgley, Ultramicroscopy 88 (2001) 187.

    Article  PubMed  CAS  Google Scholar 

  105. R. Grimm, D. Typke and W. Baumeister, J. Microsc. 190 (1998) 339.

    Article  Google Scholar 

  106. P. Laquerriere, E. Kocsis, G. Zhang, T. L. Talbot and R. D. Leapman Microsc Microanal 9(suppl 2) (2003) 240.

    Google Scholar 

  107. M. Weyland and P. A. Midgley. Microsc Microanal 9 (2003) 542.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Midgley, P.A. (2005). Tomography Using the Transmission Electron Microscope. In: Yao, N., Wang, Z.L. (eds) Handbook of Microscopy for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8006-9_19

Download citation

Publish with us

Policies and ethics