Skip to main content

Smads In Mesenchymal Differentiation

  • Chapter
Smad Signal Transduction

Part of the book series: Proteins and Cell Regulation ((PROR,volume 5))

Abstract

Transforming growth factor-β (TGF-β) family members play key roles in development through their regulatory roles in cell and tissue differentiation. Among the differentiation lineages, mesenchymal tissue differentiation into bone, fat, cartilage or muscle is strongly regulated by TGF-β family members. Smads have shown themselves to function as cell-intrinsic regulators of mesenchymal stem cell differentiation into osteoblasts, adipocytes, chondrocytes and myocytes. Their activities are defined by autocrine and paracrine signals from TGF-β family members, and regulate the proliferation of the mesenchymal progenitor cell pool, the selection of the lineage along which the cells will differentiate, and the progression of differentiation. At the molecular level, Smads can inhibit progression of differentiation, through functional repression of key transcription factors that drive differentiation, or alternatively activate the expression, or enhance the activities, of such transcription factors to drive the selection of a lineage and progression along a particular lineage

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, M., Ankenbauer, T., Schröder, D., Hollnagel, A., Mayer, H., and Gross, G., 1993, Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 12: 871-880.

    PubMed  CAS  Google Scholar 

  • Alliston, T., Choy, L., Ducy, P., Karsenty, G., and Derynck, R., 2001, TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20: 2254-2272.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, J., and Serra, R., 2004, Unique and redundant roles of Smad3 in TGF-β-mediated regulation of long bone development in organ culture. Dev Dyn 230: 685-699.

    Article  PubMed  CAS  Google Scholar 

  • Artaza, J.N., Bhasin, S., Magee, T.R., Reisz-Porszasz, S., Shen, R., Groome, N.P., Fareez, M.M., and Gonzalez-Cadavid, N.F., 2005, Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146: 3547-3557.

    Article  PubMed  CAS  Google Scholar 

  • Asahina, I., Sampath, T.K., and Hauschka, P.V., 1996, Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222: 38-47.

    Article  PubMed  CAS  Google Scholar 

  • Baur S.T., Mai J.J., and Dymecki, S.M., 2000, Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127: 605-619.

    PubMed  CAS  Google Scholar 

  • Black, B.L., and Olson, E.N., 1998, Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14: 167-196.

    Article  PubMed  CAS  Google Scholar 

  • Brugger, S.M., Merrill, A.E., Torres-Vazquez J, Wu, N., Ting, M.C., Cho, J.Y., Dobias, S.L., Yi, S.E., Lyons, K., Bell, J.R., Arora, K., Warrior, R., and Maxson, R., 2004, A phylogenetically conserved cis-regulatory module in the Msx2 promoter is sufficient for BMP-dependent transcription in murine and Drosophila embryos. Development 131: 5153-5165.

    Article  PubMed  CAS  Google Scholar 

  • Canalis, E., Economides, A.N., and Gazzerro, E., 2003, Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24: 218-235.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A.I., 2005, Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11: 1198-1211.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Ji, X., Harris, M.A., Feng, J.Q., Karsenty, G., Celeste, A.J., Rosen, V., Mundy, G.R., and Harris, S.E., 1998, Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142: 295-305.

    Article  PubMed  CAS  Google Scholar 

  • Chimal-Monroy, J., Rodriguez-Leon, J., Montero, J.A., Ganan, Y., Macias, D., Merino, R., and Hurle, J.M., 2003, Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257: 292-301.

    Article  PubMed  CAS  Google Scholar 

  • Choy, L., Skillington, J., and Derynck, R., 2000, Roles of autocrine TGF-β receptor and Smad signaling in adipocyte differentiation. J Cell Biol 149: 667-682.

    Article  PubMed  CAS  Google Scholar 

  • Choy, L., and Derynck, R., 2003, Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 278: 9609-9619.

    Article  PubMed  CAS  Google Scholar 

  • Clouthier, D.E., Comerford, S.A., and Hammer, R.E., 1997, Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-β1 transgenic mice. J Clin Invest 100: 2697-2713.

    Article  PubMed  CAS  Google Scholar 

  • Cusella-De Angelis, M.G., Molinari, S., Le Donne, A., Coletta, M., Vivarelli, E., Bouche, M., Molinaro, M., Ferrari, S., and Cossu, G., 1994, Differential response of embryonic and fetal myoblasts to TGF β: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120: 925-933.

    PubMed  CAS  Google Scholar 

  • de Crombrugghe, B., Lefebvre, V., and Nakashima, K., 2001, Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 13: 721-7.

    Article  PubMed  Google Scholar 

  • Dhawan, J., and Rando, T.A., 2005, Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15: 666-673.

    Article  PubMed  CAS  Google Scholar 

  • Docheva, D., Hunziker, E.B., Fassler, R., and Brandau, O., 2005, Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25: 699-705.

    Article  PubMed  CAS  Google Scholar 

  • Dosch, R., Gawantka, V., Delius, H., Blumenstock, C., and Niehrs, C., 1997, Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124: 2325-2334.

    PubMed  CAS  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridal, A.L., and Karsenty, G., 1997, Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754.

    Article  PubMed  CAS  Google Scholar 

  • Erlebacher, A., and Derynck, R., 1996, Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132: 195-210.

    Article  PubMed  CAS  Google Scholar 

  • Filvaroff, E.H., Ebner, R., and Derynck, R., 1994, Inhibition of myogenic differentiation in myoblasts expressing a truncated type II TGF-β receptor. Development 121: 185-195.

    Google Scholar 

  • Filvaroff, E., Erlebacher, A., Ye, J., Gitelman, S.E., Lotz, J, Heillman, M., and Derynck, R., 1999, Inhibition of TGF-β receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126: 4267-4279.

    PubMed  CAS  Google Scholar 

  • Furumatsu, T., M. Tsuda, M., Yoshida, K., Taniguchi, N., Ito, T., Hashimoto, M., Ito, T., and Asahara, H., 2005, Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 280: 35203-35208.

    Article  PubMed  CAS  Google Scholar 

  • Gimble, J.M., Morgan, C., Kelly, K., Wu, X., Dandapani, V., Wang, C.S., and Rosen, V., 1995, Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem 58: 393-402.

    Article  PubMed  CAS  Google Scholar 

  • Green, J.B.A., New, H.V., and Smith, J.C., 1992, Responses of embryonic Xenopus cells to activin and FGF are separate by multiple dose thresholds and correspond to distinct axes of mesoderm. Cell 71: 731-739.

    Article  PubMed  CAS  Google Scholar 

  • Gori, F., Thomas, T., Hicok, K.C., Spelsberg, T.C., and Riggs, B.L., 1999, Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535.

    Article  PubMed  CAS  Google Scholar 

  • Harada, S., and Rodan, G.A., 2003, Control of osteoblast function and regulation of bone mass. Nature 423: 349-355.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, S., Yamanaka, M., Kawachi, H., Matsui, T., and Yano, H., 2005, Activin A inhibits differentiation of 3T3-L1 preadipocyte. Mol Cell Endocrinol 232: 21-26.

    Article  PubMed  CAS  Google Scholar 

  • Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U., and Nordheim, A., 1999, Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274: 19838-19845.

    Article  PubMed  CAS  Google Scholar 

  • Hotten, G.C., Matsumoto, T., Kimura, M., Bechtold, R.F., Kron, R., Ohara, T., Tanaka, H., Satoh, Y., Okazaki, M., Shirai, T., Pan, H., Kawai, S., Pohl. J.S., and Kudo, A., 1996, Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 13: 65-74.

    PubMed  CAS  Google Scholar 

  • Ignotz, R.A., and Massagué, J., 1985, Type β transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc Natl Acad Sci U S A 82: 8530-8534.

    Article  PubMed  CAS  Google Scholar 

  • Jeoung, D.-I., Tang, B., and Sonenberg, M., 1995, Mitogenic response to TGF-β in 3T3-F442A cells. Biochem Biophys Res Comm 216: 964-969.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, M.E., Roberts, A.B., Sporn, M.B., and Bolander, M.E., 1990, Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110: 2195-2207.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.S., Alliston, T., Delston, R., and Derynck, R., 2005, Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3. EMBO J 24: 2543-2555.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., and Suda, T., 1994, Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127, 1755-1766.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.W., and Lassar, A.B., 2003, Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 23: 8704-8717.

    Article  PubMed  CAS  Google Scholar 

  • Korchynskyi, O., and ten Dijke, P., 2002, Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277: 4883-4891.

    Article  PubMed  CAS  Google Scholar 

  • Kulyk, W.M., Rodgers, B.J., Greer, K., and Kosher, R.A., 1989, Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-β. Dev Biol 135: 424-430.

    Article  PubMed  CAS  Google Scholar 

  • Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur, R., 2002, Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277: 49831-49840.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.S., Kim, H.J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., and Bae, S.C., 2000, Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20: 8783-8792.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.H., Kim, Y.J., Kim, H.J., Park, H.D., Kang, A.R., Kyung, H.M., Sung, J.H., Wozney, J.M., Kim, H.J., and Ryoo, H.M., 2003, BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278: 34387-34394.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.H., Kim, Y.J., Yoon, W.J., Kim, J.I., Kim, B.G., Hwang, Y.S., Wozney, J.M., Chi, X.Z., Bae, S.C., Choi, K.Y., Cho, J.Y., Choi, J.Y., and Ryoo, H.M., 2005, Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 280: 35579-35587.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, V., and Smits, P., 2005, Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75: 200-212.

    Article  PubMed  CAS  Google Scholar 

  • Lengner, C.J., Hassan, M.Q., Serra, R.W., Lepper, C., van Wijnen, A.J., Stein, J.L., Lian, J.B., and Stein, G.S., 2005, Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. J Biol Chem 280: 15872-15879.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D., Black, B.L., and Derynck, R., 2001, TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15: 2950-2966.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D., Kang, J.S., and Derynck, R., 2004, TGF-β-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 23: 1557-1566.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rovira, T., Chalaux, E., Massagué, J., Rosa, J.L., and Ventura, F., 2002, Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem 277: 3176-31785.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, S., Hayashi, S., Komiya, S., Imamura, T., and Miyazono, K., 2004, Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23: 552-563.

    Article  PubMed  CAS  Google Scholar 

  • Marazzi, G., Wang, Y., and Sassoon D., 1997, Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev Biol 186: 127-138.

    Article  PubMed  CAS  Google Scholar 

  • McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., and Kambadur, R., 2003, Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162: 1135-1147.

    Article  PubMed  CAS  Google Scholar 

  • McPherron, A.C., and Lee, S.-J., 1993, GDF-3 and GDF-9: two new members of the transforming growth factor-β superfamily containing a novel pattern of cysteines. J Biol Chem 268: 3444-3449.

    PubMed  CAS  Google Scholar 

  • McPherron, A.C., Lawler, A.M., and Lee, S.-J., 1997, Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387: 83-90.

    Article  PubMed  CAS  Google Scholar 

  • McPherron, A.C., and Lee, S.-J., 2002, Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109: 595-601.

    Article  PubMed  CAS  Google Scholar 

  • Millan, F.A., Denhez, F., Kondaiah, P., and Akhurst, R.J., 1991, Embryonic gene expression patterns of TGF β1, β2 and β3 suggest different developmental functions in vivo. Development 111: 131-43.

    PubMed  CAS  Google Scholar 

  • Miyama, K., Yamada, G., Yamamoto, T.S., Takagi, C., Miyado, K., Sakai, M., Ueno, N., and Shibuya, H., 1999, A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 208: 123-133.

    Article  PubMed  CAS  Google Scholar 

  • Murtaugh, L.C., Chyung, J.H., and Lassar, A.B., 1999, Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225-237.

    PubMed  CAS  Google Scholar 

  • Nakashima, K., Takizawa, T., Ochiai, W., Yanagisawa, M., Hisatsune, T., Nakafuku, M., Miyazono, K., Kishimoto, T., Kageyama, R., and Taga, T., 2001, BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci U S A 98: 5868-5873.

    Article  PubMed  CAS  Google Scholar 

  • Nishitoh, H., Ichijo, H., Kimura, M., Matsumoto, T., Makishima, F., Yamaguchi, A., Yamashita, H., Enomoto, S., and Miyazono, K., 1996, Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 271: 21345-21352.

    Article  PubMed  CAS  Google Scholar 

  • Norton, J.D., 2000, Id helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113: 3897-3905.

    PubMed  CAS  Google Scholar 

  • Ogata, T., Wozney, J.M., Benezra, R., and Noda, M., 1993, Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc Natl Acad Sci U S A 90: 9219-9222.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N., Sternberg, E., Hu, J.S., Spizz, G., and Wilcox, C., 1986, Regulation of myogenic differentiation by type β transforming growth factor. J Cell Biol 103: 1799-1805.

    Article  PubMed  CAS  Google Scholar 

  • Otto, T.C., and Lane, M.D., 2005, Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40: 229-242.

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter, J., Wolf, O., Naumann, A., Minne, H.W., Mundy, G.R., and Ziegler, R., 1990, Chemotactic response of osteoblast-like cells to transforming growth factor β. J Bone Miner Res 5: 825-830.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., 1999, Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.

    Article  PubMed  CAS  Google Scholar 

  • Polak, J., and Hench, L., 2005, Gene therapy progress and prospects in tissue engineering. Gene Ther 12: 1725-1733.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, B., Padilla, S.R., and Benya, P.D., 2005, Transforming growth factor (TGF)-β-activated kinase 1 mimics and mediates TGF-β-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 280: 17562-17571.

    Article  PubMed  CAS  Google Scholar 

  • Rebbapragada, A., Benchabane, H., Wrana, J.L., Celeste, A.J., and Attisano, L., 2003, Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol Cell Biol 23: 7230-7242.

    Article  PubMed  CAS  Google Scholar 

  • Samad, F., Yamamoto, K., Pandey, M., and Loskutoff, D.J., 1997, Elevated expression of transforming growth factor-β in adipose tissue from obese mice. Mol Med 3: 37-48.

    PubMed  CAS  Google Scholar 

  • Sartorelli, V., and Caretti, G., 2005, Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Curr Opin Genet Dev 15: 528-535.

    Article  PubMed  CAS  Google Scholar 

  • Serra, R., Karaplis, A., and Sohn, P., 1999, Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor β (TGF-β) on endochondral bone formation. J Cell Biol 145: 783-794.

    Article  PubMed  CAS  Google Scholar 

  • Seyedin, S.M., Thomas, T.C., Thompson, A.Y., Rosen, D.M., and Piez, K.A., 1985, Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U S A 82: 2267-2271.

    Article  PubMed  CAS  Google Scholar 

  • Sowa, H., Kaji, H., Hendy, G.N., Kanaff, L., Komori, T., Sugimoto, T., and Chihara, K., 2004, Menin is required for bone morphogenetic protein 2- and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 279: 40267-40275.

    Article  PubMed  CAS  Google Scholar 

  • Skillington, J., Choy, L., and Derynck, R., 2002, Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 159: 135-146.

    Article  PubMed  CAS  Google Scholar 

  • Sottile, V., and Seuwen, K., 2000, Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone), FEBS Lett 475: 201-204.

    Article  PubMed  CAS  Google Scholar 

  • Stern, H.M., Lin-Jones, J., and Hauschka, S.D., 1997, Synergistic interactions between bFGF and a TGF-β family member may mediate myogenic signals from the neural tube. Development 124: 3511-3523.

    PubMed  CAS  Google Scholar 

  • Storm, E.E., Huynh, T.V., Copeland, N.G., Jenkins, N.A., Kingsley, D.M., and Lee, S.J., 1994, Limb alterations in brachypodism mice due to mutations in a new member of the TGF β-superfamily. Nature 368: 639-643.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Ueno, N., and Hemmati-Brivanlou, A., 1997, Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124: 3037-3044.

    PubMed  CAS  Google Scholar 

  • Torti, S.V., Larrick, J.W., and Ringold, G.M., 1989, Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor β. J Cell Biol 108: 1105-1113.

    Article  PubMed  CAS  Google Scholar 

  • Tsumaki, N., Tanaka, K., Arikawa-Hirasawa, E., Nakase, T., Kimura, T., Thomas, J.T., Ochi, T., Luyten, F.P., and Yamada, Y., 1999, Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J Cell Biol 144: 161-173.

    Article  PubMed  CAS  Google Scholar 

  • Vinals, F., and Ventura, F., 2004, Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. J Biol Chem 279: 45766-45772.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, K.R., Liu, X., Chang, X., and Allen, R.E., 2005, Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 102: 2519-2524.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E.A., Israel, D.I., Kelly, S., and Luxenberg, D.P., 1993, Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9: 57-71.

    PubMed  CAS  Google Scholar 

  • Wang, W., Yang, Y., Meng, Y., and Shi, Y., 2004, GDF-3 is an adipogenic cytokine under high fat dietary condition. Biochem Biophys Res Commun 321: 1024-1031.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., de Caestecker, M.P., and Yamada, Y., 2001, Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem 276: 14466-14473.

    PubMed  CAS  Google Scholar 

  • Witthuhn, B.A., and Bernlohr, D.A., 2001, Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 14: 129-135.

    Article  PubMed  CAS  Google Scholar 

  • Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A., 1988, Novel regulators of bone formation: molecular clones and activities. Science 242: 1528-1534.

    Article  PubMed  CAS  Google Scholar 

  • Yi, S.E., Daluiski, A., Pederson, R., Rosen, V., and Lyons, K.M., 2000, The type I BMP receptor BMPR-IB is required for chondrogenesis in the mouse limb. Development 127: 621-630.

    PubMed  CAS  Google Scholar 

  • Ying, Q.L., Nichols, J., Chambers, I., and Smith, A., 2003, BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281-292

    Article  PubMed  CAS  Google Scholar 

  • Yoon, B.S., Ovchinnikov, D.A., Yoshii, I., Mishina, Y., Behringer, R.R., and Lyons, K.M., 2005, Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102: 5062-5067.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi, S.K., Sullivan, A.J., van Wijnen, A.J., Stein, J.L., Stein, G.S., and Lian, J.B., 2002, Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A 99: 8048-8053.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.W., Yasui, N., Ito, K., Huang, G., Fujii, M., Hanai, J., Nogami, H., Ochi, T., Miyazono, K., and Ito, Y., 2000, A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A 97: 10549-10554.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Tan, X., Li, W., Wang, Y., Wang, J., Cheng, X., and Yang, X., 2005, Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol 284: 311-322.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H., 2001, Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211-228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Derynck, R., Choy, L., Alliston, T. (2006). Smads In Mesenchymal Differentiation. In: Dijke, P.t., Heldin, CH. (eds) Smad Signal Transduction. Proteins and Cell Regulation, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4709-6_5

Download citation

Publish with us

Policies and ethics