Skip to main content

Modeling the SOI MOSFET nonlinearities. An empirical approach

  • Chapter
TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annema, A. -J.; Nauta, B.; van Langevelde, R.; Tuinhout, H. “Analog circuits in ultra-deep-submicron CMOS”, IEEE J. Solid-State Circuits, 2005, 40(1), 132-143.

    Article  Google Scholar 

  2. Colinge, J. -P. “Fully-depleted SOI CMOS for analog applications”, IEEE Trans. Electron Dev., 1998, 45(5), 1010-1016.

    Article  Google Scholar 

  3. Flandre, D. et al. “Fully depleted SOI CMOS technology for heterogeneous micro-power, high-temperature or RF microsystems”, Solid-State Electron., 2001, 45(4), 541-549.

    Article  Google Scholar 

  4. Subramanian, V. et al. “Device and circuit-level analog performance trade-offs: A comparative study of bulk- versus Fin-FETs”, IEEE Int. Electr. Dev. Meeting, Washington, USA, December 2005.

    Google Scholar 

  5. Raskin, J. -P.; Viviani, A.; Flandre, D.; Colinge, J. -P. “Substrate crosstalk reduction using SOI technology”, IEEE Trans. on Electr. Dev., 1997, 44(12), 2252-2261.

    Article  Google Scholar 

  6. Raynaud, C. et al. “Is SOI CMOS a promising technology for SOCs in high frequency range?” 207th Electrochemical Society Meeting, Proc. Silicon Insulator Technol. Dev., Quebec City, Canada, May 2005, 331-344.

    Google Scholar 

  7. Lee, M. S. L.; Tenbroek, B. M.; Redman-White, W.; Benson, J.; Uren, M. J. “A phys-ically based compact model of partially depleted SOI MOSFETs for analog circuit simulation”, IEEE J. Solid-State Circuits, 2001, 36(1), 110-121.

    Article  Google Scholar 

  8. Iniguez, B.; Ferreira, L.; Gentinne, B.; Flandre, D. “A physically-based C∞ -continuous fully-depleted SOI MOSFET model for analog applications”, IEEE Trans. Electron Dev., 1996, 43(4), 568-575.

    Article  Google Scholar 

  9. Veeraraghavan, S.; Fossum, J. G. “A physical short-channel model for the thin-film SOI MOSFET applicable to device and circuit CAD”, IEEE Trans. Electron Dev., 1988, 35(11), 1866-1875.

    Article  Google Scholar 

  10. Colinge, J. -P. Silicon-on-Insulator Technology: Materials to VLSI, KluwerAcademic Publisher, 1991.

    Google Scholar 

  11. Howes, R.; Redman-White, W. “A small-signal model for the frequency-dependent drain admittance in floating-substrate MOSFET’s”, IEEE J. Solid-State Circuits, 1992, 27(8), 1186-1193.

    Article  Google Scholar 

  12. Chen, J.; Fang, P.; Ko, P. K.; Hu, C.; Solomon, R.; Chan, T. -Y.; Sodini, C. G. “Noise over-shoot at drain current kink in SOI MOSFET”, Proc. IEEE Int. SOI Conf., 1990, 40-41.

    Google Scholar 

  13. Kilchytska, V.; Levacq, D.; Vancaillie, L.; Flandre, D. “On the great potential of non-doped MOSFETs for analog applications in partially-depleted SOI CMOS process”, Solid-State Electron., 2005, 49(5), 708-715.

    Article  Google Scholar 

  14. Tseng, Y. -C. et al. “AC floating body effects and the resultant analog circuit issues in submicron floating body and body-grounded SOI MOSFET’s”, IEEE Trans. Electron Dev., 1999, 46(8), 1685-1692.

    Article  Google Scholar 

  15. Joshi, R. V. et al. “Effects of gate-to-body tunneling current on PD/SOI CMOS SRAM”, Digest ofTechn. Papers. 2001 Symposium onVLSITechnology, 2001, 75-76.

    Google Scholar 

  16. Mercha, A.; Rafi, J. M.; Simoen, E.; Augendre, E.; Claeys, C. “Linear kink effect induced by electron valence band tunneling in ultrathin gate oxide bulk and SOI MOSFETS”, IEEE Trans. on Electr. Dev., 2003, 50(7), 1675-1682.

    Article  Google Scholar 

  17. Lederer, D.; Flandre, D.; Raskin, J. -P. “AC behavior of gate-induced floating body effects in ultrathin oxide PD SOI MOSFETs”, IEEE Electr. Dev. Lett., 2004, 25(2), 104-106.

    Article  Google Scholar 

  18. Vancaillie, L. A Methodology for Characterizing and Introducing MOSFET Imperfections in Analog Top-Down Synthesis and Bottom-up Validation, Ph. D. Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2005, avail-able from http://edoc. bib. ucl. ac. be/ucl/.

  19. Wambacq, P. Distortion Analysis of Analog Integrated Circuits. Dordrecht: Kluwer, 1998.

    Google Scholar 

  20. van Langevelde, R. et al. “RF-distortion in deep-submicron CMOS technologies”, Technical Digest of Int. Electron. Dev. Meeting, 2000, 807-810.

    Google Scholar 

  21. Sansen, W. “Distortion in elementary transistor circuits”, IEEE Trans. Circ. & Syst. II: Analog and Digital Signal Process., 1999, 46(3), 315-325.

    Article  Google Scholar 

  22. Bussgang, J.; Ehrman, L.; Graham, J. “Analysis of nonlinear systems with multiple inputs”, Proc. IEEE, 1974, 62(8), 1088-1119.

    Article  Google Scholar 

  23. Mass, S. “A general-purpose computer program for the volterra-series analysis of nonlinear microwave circuits”, Proc. IEEE Int. Sympos. Microwave Theory Techn., 1988, 311-314.

    Google Scholar 

  24. Verspecht, J.; Debie, P.; Barel, A.; Martens, J. “Accurate on wafer measurement of phase and amplitude of the spectral components of incident and scattered voltage waves at the signal ports of a nonlinear microwave device”, IEEE Int. Microwave Sympos. Digest, 1995, 3, 1029-1032.

    Google Scholar 

  25. Parvais, B.; Raskin, J. -P. “Analytical expressions for distortion of SOI MOSFETs using the volterra series”, Proc. 12th European GAAS, Amsterdam, The Netherlands, 2004, 223-226.

    Google Scholar 

  26. Lee, T. -Y.; Cheng, Y. “High-frequency characterization and modeling of distortion behavior of MOSFETs for RF IC design”, IEEE J. Solid-State Circuits, 2004, 39(9), 1407-1414.

    Article  Google Scholar 

  27. Cerdeira, A.; Alemán, M. A.; Estrada, M.; Flandre, D. “Integral function method for determination of nonlinear harmonic distortion”, Solid-State Electron., 2004, 48(12), 2225-2234.

    Article  Google Scholar 

  28. Parvais, B.; Raskin, J. -P.; Cerdeira, A.; Estrada, M. “Application of integral function method for distortion analysis of microwave transistors”, Asia Pacific Microwave Conf., New Delhi, India, December 2004.

    Google Scholar 

  29. Adan, A. O.; Yoshimasu, T.; Shitara, S.; Tanba, N.; Fukurni, M. “Linearity and low-noise performance of SOI MOSFETs for RF applications”, IEEE Trans. Electron Dev., 2002, 49(5), 881-888.

    Article  Google Scholar 

  30. Angelov, I.; Zirath, H.; Rorsman, N. “A new empirical nonlinear model for HEMT and MESFET devices”, IEEE Trans. Microwave Theory Techn., 1992, 40(12), 2258-2266.

    Article  Google Scholar 

  31. Siligaris, A.; Vanmackelberg, M.; Dambrine, G.; Vellas, N.; Danneville, F. “A new empirical non-linear model for SOI MOSFET”, Proc. 10th European GAAS, Milan, Italy, 2002, 101-104.

    Google Scholar 

  32. Siligaris, A. Modélisation grand signal de MOSFET en hyperfrequences: application à l’étude des non linearités des filières SOI, PhD Thesis, IEMN, Lille, France, 2004; available from http://www. univ-lille1. fr/anodegroup/.

  33. Siligaris, A.; Dambrine, G.; Danneville, F. “Non-linear modeling of the kink effect in deep sub-micron SOI MOSFET”, Proc. 12th Eur. GAAS, Amsterdam, The Netherlands, 2004, 47-50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Parvais, B., Siligaris, A. (2006). Modeling the SOI MOSFET nonlinearities. An empirical approach. In: GRABINSKI, W., NAUWELAERS, B., SCHREURS, D. (eds) TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4556-5_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4556-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4555-4

  • Online ISBN: 978-1-4020-4556-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics