Skip to main content

CYTOGENETIC EFFECT OF RADIOACTIVE OR CHEMICAL CONTAMINATION ON SPRING BARLEY INTERCALARY MERISTEM CELLS

  • Conference paper
Ecotoxicology, Ecological Risk Assessment and Multiple Stressors

Abstract

The frequency of cytogenetic disturbance in spring barley intercalar meristem cells was studies under a range of different stressors. There was a nonlinearly dependency on 137Cs, Cd, Pb and 2,4-D (dichlorophenoxyacetic acid) herbicide contamination concentrations in the exposure ranges used. The frequency of cytogenetic disturbance increased at the lower concentrations of the pollutants used more rapidly than at higher ones. Contamination of the soil by lead at the concentration meeting the current standards for permissible content in soil and by 2,4-D herbicide at the application rates recommended for agricultural use resulted in a significant increase in aberrant cell frequency. In these cases, the extent of observed cytogenetic disturbance was comparable with the effect induced by 137Cs soil contamination of 14.8 MBq/m2. The highest severity of aberrant cell damage was observed in soil contaminated with 137Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg U.G., Thunberg T.M. 1980. Chlorinated phenols: occurrence, toxicity, metabolism and environmental impact, Crit. Rev. Toxicol. 7 pp. 1–35.

    CAS  Google Scholar 

  2. Ateeq B., Farah A.,Ali M.N, Ahmad W.2002. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test, Mutat. Res. 514 pp. 105–113.

    CAS  Google Scholar 

  3. Catalogue of chemical and biological compounds for combating agricultural pests, plant diseases and weeds, and plant growth's regulators permitted for agricultural application in 1986–1990.1987. Moscow. pp. 102–103.

    Google Scholar 

  4. Constantin M.J., R.A. Nilan R.A.1982. Chromosome aberration assays in barley (Hordeum vulgare). A report of the U.S. Environmental Protection Agency Gen-Tox Program, Mutat. Res. 99. pp. 13–36.

    CAS  Google Scholar 

  5. Filkowski J.,Besplug J., Burke P., Kovalchuk I., Kovalchuk O.2003.Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harbouring recombination and point mutation markers, Mutat. Res. 542. pp. 23–32.

    CAS  Google Scholar 

  6. Geras'kin S.A, Fesenko S.V., Chernyaeva., L.G., Sanzharova N.I. 1994. Statistical method of empirical distribution analysis of coefficient of radionuclids' accumulation in plant, Agricultural Biology 1. pp. 130–137.

    Google Scholar 

  7. Geras'kin S.A., Dikarev V.G., Dikareva N.S., Oudalova A.A. 1996. Effect of ionizing irradiation or heavy metals on the frequency of chromosome aberrations in spring barley leaf meristem, Russ. J. Genet. 32. pp. 240–245.

    Google Scholar 

  8. Geras'kin S.A., Dikarev V.G.,.Ya Ye. Zyablitskaya, A.A. Oudalova A.A., Ye.V. Spirin Ye.V., Alexakhin R.M.2003 Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops, J. Environm. Radioact. 66 pp. 155–169.

    Google Scholar 

  9. Gofman J., Radiation-induced cancer from low dose exposure: an independent analysis. 1990 CNR Book Division, San Francisco.

    Google Scholar 

  10. Gudkov I.N. 1991 Basics of common and agricultural radiobiology, USChA Publishers, Kiev.

    Google Scholar 

  11. Kal'chenko V.A. 1996.The dependence of genetic effects on the dose of β-radiation in Hordeum vulgare L. plants grown under radioactive contamination, Russ. J. Gen. 32 pp. 842–850.

    Google Scholar 

  12. Kaur P., Grover I.S.1985a. Cytological effects of some organophosphorus pesticides: I. Mitotic effects, Cytologia 50, pp. 187–197.

    CAS  Google Scholar 

  13. Kaur P., Grover I.S.1985b. Cytological effects of some organophosphorus pesticides: II.Meiotic effects, Cytologia 50 pp. 199–211.

    CAS  Google Scholar 

  14. Khalatkar A.S., Bhargava Y.R. 1982. 2,4-Dichlorophenoxyacetic acid - a new environmental mutagen, Mutat. Res. 103 pp. 111–114.

    Article  CAS  Google Scholar 

  15. Knasmuller S., Gottmann, E. Steinkellner H., Fomin, A. Pickl C., God R., Kundi M.1998. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays, Mutat. Res. 420 pp. 37–48.

    CAS  Google Scholar 

  16. Kovalchuk O., Arkhipov A., Barylyak I., Karachov I., Titov V., Hohn B., I. Kovalchuk I.2000. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants, Mutat. Res. 449 pp. 47–56.

    CAS  Google Scholar 

  17. Kovalchuk O., Kovalchuk I., Arkhipov A., Telyuk P., Hohn B., Kovalchuk L.1998. The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident, Mutat. Res. 415 pp. 47–57.

    CAS  Google Scholar 

  18. Kovalchuk O., Titov V., Hohn B., Kovalchuk I.2001. A sensitive transgenic plant system to detect toxic inorganic compounds in the environment, Nat. Biotechnol. 19. 568–572.

    Article  CAS  Google Scholar 

  19. Magos L. 1991. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species, Environ. Health Perspect. 95. 157–189.

    CAS  Google Scholar 

  20. Majer, B.J. D. Tscherko D., Paschke A., Wennrich R., M. Kundi M., Kandeler E., Knasmuller S.2002. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation, Mutat. Res. 515. 111–124.

    CAS  Google Scholar 

  21. Mikheev A.M.1999. The geterogenity of 137Cs and 90Sr distribution and dose loading on critical tissues of main seedling root, Radiat. Biol. Radioecol. 39. 663–666.

    CAS  Google Scholar 

  22. Mohandas T., Grant W.F.1972. Cytogenetic effects of 2,4-D and amitrole in relation to nuclear volume and DNA content in some higher plants, Can. J. Genet. Cytol. 14. 773–783.

    CAS  Google Scholar 

  23. Moore T.C.1974. Effects of certain synthetic plant growth regulators on the development of selected species, in: Research experiences in plant physiology - a laboratory manual, Springer, New York. 307–323.

    Google Scholar 

  24. Orlov D.S., Sadovnikova L.K., Losanovskaya I.N. 2002. Ecology and biosphere conservation at chemical pollution, Vysschaya shckola, Moscow.

    Google Scholar 

  25. Plewa M.J., E.D. Wagner, G.J. Gentile, J.M. 1984. Gentile, An evaluation of the genotoxic properties of herbicides following plant and animal activation, Mutat. Res. 136. 233–245.

    CAS  Google Scholar 

  26. Pomerantseva M.D., Ramaiya L.K., and Lyaginskaya A.M.(2000) Frequency of dominant lethal mutations induced by combined exposure to incorporated 137Cs and external γ-irradiation in mice, Russ. J. Gen. 10. 1414–1416.

    Google Scholar 

  27. Rodrigues G.S., Pimentel D., Weinstein L.H. 1998. In situ assessment of pesticide genotoxicity in an integrated pest management program: II. Maize waxy mutation assay, Mutat. Res. 412. 245–250.

    CAS  Google Scholar 

  28. Rodrigues G.S., Pimentel D., Weinstein L.H. 1998. In situ assessment of pesticide genotoxicity in an integrated pest management program: I. Tradescantia micronucleus assay, Mutat. Res. 412. 235–244.

    CAS  Google Scholar 

  29. Rossman T.G., Metal mutagenesis, in: R.A. Goyer, M.G. Cherian (Eds.). 1995.Toxicology of Metals - Biochemical Aspects, Springer, New York. 374–405.

    Google Scholar 

  30. Sanita di Toppi Gabbrielli L., R.1999. Response to cadmium in higher plants, Environ. Exp. Bot. 41. 105–130.

    Google Scholar 

  31. Soil conservation. 1996.The collection of the statutory acts. V. 2. N.G. Rubalskiy (Ed.), REFIA, Mosow.

    Google Scholar 

  32. Steinkellner H., Kong M.-S., Helma C., Ecker S., Ma T.-H., Horak O., Kundi O., S. Knasmuller S. 1998.Genotoxic effects of heavy metals: comparative investigation with plant bioassays, Environ. Mol. Mutagen. 31. 183–191.

    Article  CAS  Google Scholar 

  33. Wurgler F.E., Kramers P.G.1992. Environmental effects of genotoxins (ecogenotoxicology), Mutagenesis 7. 321–327.

    CAS  Google Scholar 

  34. Zaka R., Chenal C., Misset M.T.2002. Study of external low irradiation dose effects on induction of chromosome aberrations in Pisum sativum root tip meristem, Mutat. Res. 517. pp. 87–99.

    CAS  Google Scholar 

  35. Zhurbitskij Z.I. 1968. Theory and practice of vegetative approach, Nauka, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

GERAS'KIN, S.A., KIM, J.K., DIKAREV, V.G., OUDALOVA, A.A., DIKAREVA, N.S., SPIRIN, Y.V. (2006). CYTOGENETIC EFFECT OF RADIOACTIVE OR CHEMICAL CONTAMINATION ON SPRING BARLEY INTERCALARY MERISTEM CELLS. In: Arapis, G., Goncharova, N., Baveye, P. (eds) Ecotoxicology, Ecological Risk Assessment and Multiple Stressors. NATO Security Through Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4476-3_16

Download citation

Publish with us

Policies and ethics