Skip to main content

ON THE CHARACTERIZATION OF ELECTRONICALLY ACTIVE DEFECTS IN HIGH-к GATE DIELECTRICS

  • Conference paper
Defects in High-k Gate Dielectric Stacks

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 220))

Abstract

A number of techniques are discussed with regard the measurement of electronically active defects in high-к gate dielectrics. Following a short review of 1st-order trapping kinetics, a discussion of its limitations, especially with respect to high-к gate dielectrics is included. It is suggested that, due to the nature of the proposed trap modulated transport in high-к gate dielectrics, the 1st-order trapping kinetics used historically for SiO2, may not be applicable without significant revision. However, the measurement techniques using the standard “stress and sense” methodology, where charge is injected into the film and the effects of the charge trapping are measured with either capacitancevoltage (ΔVFB) and/or current-voltage (ΔVt) to measure the effects of the charge trapping may still be applicable if reasonable assumptions may be made. A discussion of the positioning of trapped charge (i.e. bulk vs interface) is included. Data from HfO2 using electron injection via internal photo-emission and charge centroid extraction using the “photo I-V” technique suggest that centroid of the trapped charge is within the bulk of the high-к film independent of bias polarity and photon energy. Techniques involving transient current analysis using charge pumping in both “conventional base sweep” and “amplitude sweep” and pulsed IDS-VG are also presented. While these techniques are capable of measuring interfacial and near-interfacial trapped charge, their usefulness for obtaining a full understanding of spatial or energetic trap distributions is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Barsous, and A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid-State Circuits SC-9, 256 (1974).

    Google Scholar 

  2. D. A. Buchanan, Scaling the gate dielectric: Materials, integration and reliability, IBM J. Res. and Develop. 43, 245 (1999).

    Google Scholar 

  3. S. H. Lo, D. A. Buchanan, and Y. Taur, Modeling and Characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides, IBM J. Res. and Develop. 43, 327 (1999).

    Google Scholar 

  4. D. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. Jamison, J. Brown, and R. Arndt, in 80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications, 2000, p. 223.

    Google Scholar 

  5. V. V. Afanas’ev, M. Houssa, A. Stesmans, G. J. Adriaenssens, and M. M. Heyns, Band alignment at the interfaces of Al2O3 and ZrO2-based insulators with metals and Si, J. NonCrys. Sol. 303, 69 (2002).

    Google Scholar 

  6. L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, Gate quality doped High-K films for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states, IEDM Technical Digest, 605 (1998).

    Google Scholar 

  7. S. Ramanathana, P. C. McIntyre, S. Guha, and E. Gusev, Charge trapping studies on ultrathin ZrO2 and HfO2 high- k dielectrics grown by room temperature ultraviolet ozone oxidation, Appl. Phys. Lett. 84, 389 (2004).

    Google Scholar 

  8. J. Robertson, K. Xiong, and B. Falabretti, Point Defects in ZrO2 high K gate oxide, IEEE Electron Device Lett., 19 (2004).

    Google Scholar 

  9. M. Houssa, J. L. Autran, A. Stesmans, and M. M. Heyns, Model for interface defect and positive charge generation in ultrathin SiO2/ZrO2 gate dielectric stacks, Appl. Phys. Lett. 81, 709 (2002).

    Article  Google Scholar 

  10. T. S. Kalkur and Y. C. Lu, Electrical characteristics of ZrO2-based metal-insulator-semiconductor structures on p-Si, Thin Solid Films 207, 193 (1992).

    Article  Google Scholar 

  11. R. Cho, S. J. Rhee, J. C. Lee, B. H. Lee, and Gennadi Bersuker, Charge Trapping and Detrapping Characteristics in Hafnium Silicate Gate Stack Under Static and Dynamic Stress, IEEE Electron Dev. Lett. 26, 197 (2005).

    Article  Google Scholar 

  12. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, G. Groeseneken, H. E. Maes, and U. Schwalke, Charge trapping in SiO2/HfO2 gate dielectrics: Comparison between chargepumping and pulsed ID-VG, Microelectronic Engineering 72, 267–272 (2004).

    Article  Google Scholar 

  13. R. J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, S. D. Gendt, and M. Heyns, Passivation and interface state density of SiO2/HfO2-based polycrystalline-Si gate stacks, Appl. Phys. Lett. 83, 533 (2003).

    Article  Google Scholar 

  14. K. Rim, E. P. Gusev, C. D’Emic, T. Kanarsky, H. Chen, J. Chu, J. Ott, K. Chan, D. Boyd, V. Mazzeo, B. H. Lee, A. Mocuta, J. Welser, S. L. Cohen, M. leong, and H.-S. Wong, Mobility Enhancement in Strained Si nMOSFETs with HfO2 Gate Dielectrics, VLSI Technology Symposium Digest of Technical Papers, 12 (2002).

    Google Scholar 

  15. E. P. Gusev, E. Cartier, M. Copel, M. Gribelyuk, D. A. Buchanan, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, M. Tuominen, M. Linnermo, and S. Haukka, in Rapid Thermal and Other Short-time Processing Techniques, edited by F. Rooseboom, P. Timans, K. G. Reid, M. C. Ozturk, D. L. Kwong, and E.P.Gusev (ECS, Pennigton, 2001).

    Google Scholar 

  16. G. D. Wilk, R. M. Wallace, and J. M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics, J. Appl. Phys. 87, 484 (2000).

    Article  Google Scholar 

  17. Z. Zhang, M. Li, and S. A. Campbell, Effects of Annealing on Charge in HfO2 Gate Stacks, IEEE Electron Dev. Lett. 26, 20 (2005).

    Google Scholar 

  18. E. P. Gusev, V. Narayanan, S. Zafar, C. C. Jr., E. Cartier, N. Bojarczuk, A. Callegari, R. Carruthers, M. Chudzik, C. D’Emic, E. Duch, P. Jamison, P. Kozlowski, D. LaTulipe, K. Maitra, F. R. McFeely, J. Newbury, V. Paruchuri, and M. Steen, Charge Trapping in Aggressively Scaled Metal Gate/High-k Stacks, IEEE, 30–5.1 (2004).

    Google Scholar 

  19. A. Kumar, M. V. Fischetti, T. H. Ning, and E. Gusev, Hot-carrier charge trapping field-effect transistors, J. Appl. Phys. 94, 1728 (2003).

    Google Scholar 

  20. S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks, J. Appl. Phys. 93, 9298 (2003).

    Article  Google Scholar 

  21. M. Houssa, M. Naili, M. M. Heyns, and A. Stesmans, Model for the charge trapping in high permittivity gate dielectric stacks, J. Appl. Phys. 89, 792 (2001).

    Article  Google Scholar 

  22. M. Houssa, A. Stesmans, M. Naili, and M. M. Heyns, Charge trapping in very thin highpermittivity gate dielectric layers, Appl. Phys. Lett. 77, 1381 (2000).

    Google Scholar 

  23. L. P. Trombetta, F. J. Feigl, and R. J. Zeto, Positive charge generation in metal-oxidesemiconductor capacitors, J. Appl. Phys. 69, 2512 (1991).

    Article  Google Scholar 

  24. D. Buchanan, J. H. Stathis, and P. R. Wagner, Trapped Positive Charge in Plasma-Enhanced Chemical-Vapor-Depositied Silicon Dioxide, Appl. Phys. Lett. 56, 1037 (1990).

    Article  Google Scholar 

  25. H. Z. Massoud, Charge-transfer dipole moments at the Si-Si02 interface, J. Appl. Phys. 63, 2000–2005 (1988).

    Article  Google Scholar 

  26. D. J. DiMaria, in The Properties of Electron and Hole Traps in Thermal SiO2 Layers Grown on Silicon, Yorktown Heights, New York USA, 1979, p. 160–178.

    Google Scholar 

  27. N. Endo, Charge distributions in silicon nitride of MNOS devices, Solid State Electronics 21, 1153(1978).

    Article  Google Scholar 

  28. D. J. DiMaria and J.Stasiak, Trap creation in silicon dioxide produced by hot electrons, J. Appl. Phys. 65, 2342 (1989).

    Article  Google Scholar 

  29. M. Houssa, A. Stesmans, and M. M. Heyns, Model for the trap-assisted tunnelling current through very thin SiO2/ZrO2 gate dielectric stacks, Semicond. Sci. Technol. 16, 427 (2001).

    Google Scholar 

  30. W. J. Zhu, T.-P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current Transport in Metal/Hafnium Oxide/Silicon Structure”, IEEE Electron Dev. Lett. 23, 97 (2002).

    Google Scholar 

  31. D. A. Buchanan, M. V. Fischetti, and D. J. DiMaria, Coulombic and neutral trapping centres in silicon dioxide, Physical Review B 43, 1471–1486 (1991).

    Article  Google Scholar 

  32. M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, Defect generation in Si/SiO2/ZrO2/TiN structures: the possible role of hydrogen, Semicond. Sci. Technol. 16, L93 (2001).

    Google Scholar 

  33. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthsarathy, E. Vincent, and G. Ghibaudo, Review on High-K dielectrics reliability issues, IEEE Transactions on Device and Materials Reliability 5, 1 (2005).

    Article  Google Scholar 

  34. S. Zafar, A. Callegari, E. Gusev, and M. Fischetti, Charge Trapping in High-K Gate Dielectric Stack, IEDM Techincal Digest, 517 (2002).

    Google Scholar 

  35. G. Bersuker, J. H. Sim, C. D. Young, R. Choi, P. M. Zeitzoff, G. A. Brown, B. H. Lee, and R. W. Murto, Effect of Pre-Existing Defects on Reliability Assessment of High-K Gate Dielectrics, Microelectronics Reliability 44, 1509 (2004).

    Google Scholar 

  36. C. Z. Zhao, M. B. Zahid, J. F. Zhang, G. Groeseneken, R. Degraeve, and S. D. Gendt, Properties and dynamic behavior of electron traps in HfO2/SiO2 stacks, Microelectronic Engineering 80, 366 (2005).

    Article  Google Scholar 

  37. A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, J. McPherson, and L. Colombo, Characterization and Comparison of the Charge Trapping in HfSiON and HfO2 Gate Dielectrics, IEDM Technical Digest, 939 (2003).

    Google Scholar 

  38. C. Leroux, J. Mitard, G. Ghibaudo, X. X. Garros, G. Reimbold, B. Guillaumor, and F. Martin, Characterization and modeling of hysteresis phenomena in high K dielectrics, IEDM Technical Digest, 737–740 (2004).

    Google Scholar 

  39. Z. Xu, L. Pantisano, A. Kerber, R. Degraeve, Eduard Cartier, S. D. Gendt, M. Heyns, and G. Groeseneken, A Study of Relaxation Current in High-k Dielectric Stacks, IEEE Trans, on Electron Dev.. 51, 402 (2004).

    Google Scholar 

  40. H. Reisinger, G. Steinlesberger, S. Jakschik, M. Gutsche, T. Hecht, M. Leonhard, U. Schroder, H. Seidl, and D. Schumann, A comparative study of dielectric relaxation losses in alternative dielectrics, IEDM Tech. Dig., 12.2.1–12.2.4. (2001).

    Google Scholar 

  41. J. R. Jameson, P. B. Griffin, A. Agah, J. D. Plummer, H.-S. Kim, D. V. Taylor, P. C.Mclntyre, and W. A. Harrison, Problems with metal-oxide high-k dielectrics due to l/t dielectric relaxation current in amorphous materials, IEDM Techincal Digest, 4.3.1–4.3.4 (2003).

    Google Scholar 

  42. S. Harasek, A. Lugstein, H. D. Wanzenboeck, and E. Bertagnolli, Slow trap response of zirconium dioxide thin films on silicon, Appl. Phys. Lett. 83, 1400–1402 (2003).

    Article  Google Scholar 

  43. D. J. DiMaria, Determination of bulk trapped charge densities and centroids from photocurrent-voltage characterisitics of MOS structures, J. Appl. Phys. 47, 4073 (1976).

    Google Scholar 

  44. L. Pantisano, E. Cartier, A. Kerber, R. Degraeve, M. Lorenzini, M. Rosmeulen, G. Groeseneken, and H. E. Maes, Dynamics of Threshold Voltage Instability in Stacked High-k Dielectrics: Role of the Interfacial Oxide, Symp. VLSI Tech. Dig., 163 (2003).

    Google Scholar 

  45. J. S. Brugler and P. G. Jespers, Charge Pumping in MOS devices, IEEE Trans. Electron Dev. ED-16, 297–302 (1969).

    Google Scholar 

  46. G. Groeseneken and H. E. Maes, Basics and applications of charge pumping in submicron MOSFETs, Microelectronics Reliability 38, 1379–1389 (1998).

    Google Scholar 

  47. S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, Influence of A12O3 Dielectrics on the Trap-Depth Profiles in MOS Devices Investigated by the Charge-Pumping Method, IEEE Trans. Electron Dev. 51, 2252–2255 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

BUCHANAN, D., FELNHOFER, D. (2006). ON THE CHARACTERIZATION OF ELECTRONICALLY ACTIVE DEFECTS IN HIGH-к GATE DIELECTRICS. In: Gusev, E. (eds) Defects in High-k Gate Dielectric Stacks. NATO Science Series II: Mathematics, Physics and Chemistry, vol 220. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4367-8_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4367-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4365-9

  • Online ISBN: 978-1-4020-4367-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics