Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 125))

  • 907 Accesses

Abstract

We present a method for simulation of collagen gels and more generally for materials comprised of a fibrillar network. The method solves a representative microstructural problem on each finite element in lieu of a constitutive equation. The method captures key features of microstructural rearrangement while maintaining the ability to perform simulations on the (large) functional length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bell, E., Ivarsson, B. and Merrill, C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vivo. Proceedings of the National Academy of Sciences of the USA 76, 1274–1278

    Google Scholar 

  2. Lopez Valle, C.A., Auger, F.A., Rompre, P.A., Bouvard, V. and Germain L. (1992) Peripheral anchorage of dermal equivalents. British Journal of Dermatology 127, 365–371

    Google Scholar 

  3. Lanir, Y.(1982) Constitutive equations for fibrous connective tissues. Journal of Biomechanics 18, 1–12

    Google Scholar 

  4. Lai, W.M., Hou, J.S. and Mow, V.C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering 113, 245–258

    Google Scholar 

  5. Farquhar, T., Dawson, P.R. and Torzilli, P.A. (1990) A microstructural model for the anisotropic drained stiffness of articular cartilage. Journal of Biomechanical Engineering 112, 414–425

    Google Scholar 

  6. Soulhat, J., Buschmann, M.D. and Shirazi-Adl, A. (1999) A fibril-network-reinforced model biphasic model of cartilage in unconfined compression. Journal of Biomechanical Engineering 121, 340–347

    Google Scholar 

  7. Schwartz, M.H., Leo, P.H. and Lewis J.L. (1994) A microstructural model for the elastic response of articular cartilage. Journal of Biomechanics 27, 865–873

    Article  Google Scholar 

  8. Billiar, K.L., and Sacks, M.S. (2000) Biaxial mechanical properties of native and glutaraldehyde-treated aortic valve cusp: Part II — A structural constitutive model. Journal of Biomechanical Engineering 122, 327–335

    Google Scholar 

  9. Agoram, B., and Barocas, V.H. (2001) Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. Journal of Biomechanical Engineering 123, 362–369

    Article  Google Scholar 

  10. Bruels, R.G.M., Sengers, B.G., Oomens, C.W.J., Bouten, C.V.C. and Baaijens, F.P.T. (2002) Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. Journal of Biomechanical Engineering 124, 198–206

    Google Scholar 

  11. Nemet-Nasser, S., and Hori, M. (1993) Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Chandran, P.L., Barocas, V.H. (2005). Representative Microstructure Finite Elements for Collagen Gels. In: Gladwell, G.M.L., Huyghe, J., Raats, P.A., Cowin, S.C. (eds) IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media. Solid Mechanics and Its Applications, vol 125. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3865-8_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3865-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3864-8

  • Online ISBN: 978-1-4020-3865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics