Skip to main content

Topological Fixed Point Theory and Nonlinear Differential Equations

  • Chapter
Handbook of Topological Fixed Point Theory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. S. Aleksandrov, Poincaré and topology, Russian Math. Surveys 27 (1972), 157–168.

    Article  MATH  Google Scholar 

  2. H. Amann, A note on degree theory for gradient mappings, Proc. Amer. Math. Soc. 85 (1982), 591–595.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.

    MATH  Google Scholar 

  4. A. A. Barabanova, M. A. Krasnosel'skiĭ, I. V. Fomenko, H. I. Freedman and J. Mawhin, Vector Lyapunov functions in problems of nonlinear oscillations, Automat. Remote Control 57 (1996), 322–328.

    MathSciNet  MATH  Google Scholar 

  5. Th. Bartsch and J. Mawhin, The Leray-Schauder degree of S 1-equivariant operators associated to autonomous neutral equations in spaces of periodic functions, J. Differential Equations 92 (1991), 90–99.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Berstein and A. Halanay, Index of a singular point and the existence of periodic solutions of systems with small parameter, Dokl. Akad. Nauk SSSR 111 (1956), 923–925. (Russian)

    MathSciNet  MATH  Google Scholar 

  7. G. D. Birkhoff and O. D. Kellogg, Invariant points in function space, Trans. Amer. Math. Soc. 23 (1922), 96–115.

    Article  MathSciNet  Google Scholar 

  8. A. Borisovich and W. Marzantowicz, Multiplicity of periodic solutions for the planar polynomial equation, Nonlinear Anal. 43 (2001), 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. E. J. Brouwer, Ueber Abbildungen von Mannigfaltigkeiten, Math. Ann. 71 (1912), 97–115.

    Article  MATH  Google Scholar 

  10. F. E. Browder, On a generalization of the Schauder fixed point theorem, Duke Math. J. 26 (1959), 291–303.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Campos, Möbius transformation and periodic solutions of complex Riccati equations, Bull. London Math. Soc. 9 (1997), 205–213.

    Article  MathSciNet  Google Scholar 

  12. J. Campos and J. Mawhin, Periodic solutions of quaternionic-valued ordinary differential equations, Ann. Mat. Pura Appl. (to appear).

    Google Scholar 

  13. J. Campos and R. Ortega, Nonexistence of periodic solutions of a complex Riccati equation, Differential Integral Equations 9 (1996), 247–250.

    MathSciNet  MATH  Google Scholar 

  14. A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41–72.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc-Graw-Hill, New York, 1955.

    MATH  Google Scholar 

  16. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

    MATH  Google Scholar 

  17. M. L. Fernandes and F. Zanolin, Remarks on strongly flow-invariant sets, J. Math. Anal. Appl. 128 (1987), 176–188.

    Article  MathSciNet  MATH  Google Scholar 

  18. _____, Repelling conditions for boundary sets using Liapunov-like functions, I. Flowinvariance, terminal value problems and weak persistence, Rend. Sem. Mat. Univ. Padova 80 (1988), 95–116; II. Persistence and periodic solutions, J. Differential Equations 86 (1990), 33–58.

    MathSciNet  MATH  Google Scholar 

  19. _____, On periodic solutions, in a given set, for differential systems, Riv. Mat. Pura Appl. 8 (1991), 107–130.

    MathSciNet  Google Scholar 

  20. V. V. Filippov, A mixture of the Leray-Schauder and Poincaré-Andronov methods in problem on periodic solutions of ordinary differential equations, Differential Equations 35 (1999), 1736–1739.

    MATH  MathSciNet  Google Scholar 

  21. _____, Remarks on periodic solutions of ordinary differential equations, J. Dynam. Control Systems 6 (2000), 431–451.

    Article  MATH  MathSciNet  Google Scholar 

  22. _____, Remarks on guiding functions and periodic solutions, Differential Equations 37 (2001), 485–497.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl. (4) 124 (1980), 321–343.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Furi and M. P. Pera, An elementary approach to boundary value problems at resonance, Nonlinear Anal. 4 (1980), 1081–1089.

    Article  MathSciNet  MATH  Google Scholar 

  25. _____, Co-bifurcating branches of solutions for nonlinear eigenvalue problems in Banach spaces, Ann. Mat. Pura Appl. 135 (1983), 119–132.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. R. Gabdrakhmanov and V. V. Filippov, On the absence of periodic solutions to the equation z' (t) = z 2 + h(t), Differential Equations 33 (1997), 741–744.

    MathSciNet  MATH  Google Scholar 

  27. R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes Math., vol. 586, Springer, Berlin, 1977.

    Google Scholar 

  28. Ordinary differential equations with nonlinear boundary conditions, J. Differential Equations 26 (1977), 200–222.

    Google Scholar 

  29. K. Gęba, A. Granas, T. Kaczyśki and W. Krawcewicz, Homotopie et équations non linéaires dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I 300 (1985), 303–306.

    MATH  Google Scholar 

  30. J. P. Gossez, Existence of periodic solutions for some first order ordinary differential equations, Equadiff 78, Firenze 1978, (R. Conti, G. Sestini and G. Villari, eds.), Univ. di Firenze, Firenze, 1978, pp. 361–379.

    Google Scholar 

  31. _____, Periodic solutions for some first order ordinary differential equations with monotone nonlinearities, Bull. Math. Soc. Sci. Math. R. S. Roumanie 24 (1980), 25–33.

    MATH  MathSciNet  Google Scholar 

  32. Fixed Point Theory, Springer, New York, 2003.

    Google Scholar 

  33. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewoods Cliffs, N.J., 1974.

    MATH  Google Scholar 

  34. G. Gustafson and K. Schmitt, A note on periodic solutions for delay-differential systems, Proc. Amer. Math. Soc. 42 (1974), 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. A. Krasnosel'skiÄ­, The Operator of Translation along the Trajectories of Differential Equations, Amer. Math. Soc., Providence, 1968.

    Google Scholar 

  36. A. M. Krasnosel'skiĭ, M. A. Krasnosel'skiĭ and J. Mawhin, On some conditions of existence of forced periodic oscillations, Differential Integral Equations 5 (1992), 1267–1273.

    MathSciNet  Google Scholar 

  37. _____, Differential inequalities in problems of forced nonlinear oscillations, Nonlinear Anal. 25 (1995), 1029–1036.

    Article  MathSciNet  Google Scholar 

  38. A. M. Krasnosel'skiĭ, M. A. Krasnosel'skiĭ, J. Mawhin and A. Pokrowskiĭ, Generalizing guiding functions in a problem of high frequency forced oscillations, Nonlinear Anal. 22 (1994), 1357–1371.

    Article  MathSciNet  Google Scholar 

  39. M. A. Krasnosel'skiĭ and A. I. Perov, On a certain principle for the existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, Dokl. Akad. Nauk SSSR 123 (1958), 235–238. (Russian)

    MathSciNet  Google Scholar 

  40. _____ Some criteria for existence of periodic solutions of a system of ordinary differential equations, Proc. Intern. Sympos. Nonlinear Vibrations, Kiev, 1961, vol. II, Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1961, pp. 202–211. (Russian)

    Google Scholar 

  41. M. A. Krasnosel'skiĭ and V. V. Strygin, Some criteria for the existence of periodic solutions of ordinary differential equations, Soviet Math. Dokl. 5 (1964), 763–766.

    Google Scholar 

  42. M. A. Krasnosel'skiÄ­ and P. P. ZabreÄ­ko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984.

    Google Scholar 

  43. J. Kurzweil, Ordinary Differential Equations, Elsevier, Amsterdam, 1986.

    MATH  Google Scholar 

  44. B. Laloux and J. Mawhin, Coincidence index and multiplicity, Trans. Amer. Math. Soc. 217 (1976), 143–162.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Lefschetz, Existence of periodic solutions for certain differential equations, Proc. Nat. Acad. Sci. 29 (1943), 1–4.

    MathSciNet  Google Scholar 

  46. J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. Ecole Norm. Sup. (3) 51 (1934), 45–78.

    MathSciNet  MATH  Google Scholar 

  47. N. Levinson, On the existence of periodic solutions for second order differential equations with a forcing term, J. Math. Phys. 22 (1943), 41–48.

    MATH  MathSciNet  Google Scholar 

  48. _____, Transformation theory of nonlinear differential equations of the second order, Ann. Math. (2) 45 (1944), 723–737; 49 (1948), 738.

    Article  MATH  MathSciNet  Google Scholar 

  49. N. G. Lloyd, Degree Theory, Cambridge Univ. Press, Cambridge, 1978.

    MATH  Google Scholar 

  50. R. Manásevich, J. Mawhin, and F. Zanolin, Periodic solutions of complex-valued differential equations and systems with periodic coefficients, J. Differential Equations 126 (1996), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Martelli, Continuation principles and boundary value problems, Topological Methods for Ordinary Differential Equations, Lect. Notes Math., vol. 1537, Springer, Berlin, 1993, pp. 32–73.

    Google Scholar 

  52. J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636.

    Article  MATH  MathSciNet  Google Scholar 

  53. _____ Functional analysis and boundary value problems, Studies in Ordinary Differential Equations (J. K. Hale, ed.), Math. Assoc. of America, Washington, 1977, pp. 128–168.

    Google Scholar 

  54. _____, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS, vol. 40, Amer. Math. Soc., Providence, R.I., 1979.

    Google Scholar 

  55. _____, Topological degree and boundary value problems for nonlinear differential equations, Topological Methods for Ordinary Differential Equations, Lecture Notes in Math., vol. 1537, Springer, Berlin, 1993, pp. 74–142.

    Google Scholar 

  56. _____, Continuation theorems and periodic solutions of ordinary differential equations, Topological Methods in Differential Equations and Inclusions (A. Granas and M. Frigon, eds.), Kluwer, Dordrecht, 1995, pp. 291–376.

    Google Scholar 

  57. _____, Nonlinear complex-valued differential equations with periodic, Floquet or nonlinear boundary conditions, Equadiff 95, International Conference on Differential Equations (Lisbon 1995) (L. Magalhaes, C. Rocha, L. Sanchez, eds.), World Scientific, Singapore, 1997, pp. 154–164.

    Google Scholar 

  58. _____, Bound sets and Floquet boundary value problems for nonlinear differential equations, Univ. Iagel. Acta Math. 36 (1998), 41–53.

    MATH  MathSciNet  Google Scholar 

  59. _____, Les héritiers de Pierre-François Verhulst: une population dynamique, Acad. Roy. Belg. Bull. Cl. Sci. (6) 13 (2002), 349–378.

    MathSciNet  Google Scholar 

  60. J. Mawhin and H. B. Thompson, Periodic or bounded solutions of Carathéodory systems of ordinary differential equations, J. Dynam. Differential Equations 15 (2003), 327–333.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Mawhin and W. Walter, Periodic solutions of ordinary differential equations with one-sided growth restrictions, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978), 95–106.

    MathSciNet  MATH  Google Scholar 

  62. J. Mawhin and J. R. Ward, Guiding-like functions for periodic or bounded solutions of ordinary differential equations, Discrete Contin. Dynam. Systems 8 (2002), 39–54.

    MathSciNet  MATH  Google Scholar 

  63. D. Miklaszewski, An equation z' = z 2 +p(t) with no 2π-periodic solution, Bull. Belg. Math. Soc. Simon Stevin (2) 3 (1996), 239–242.

    MATH  MathSciNet  Google Scholar 

  64. J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, 1965.

    MATH  Google Scholar 

  65. M. Mrozek, The fixed point index of a translation operator of a semiflow, Univ. Iagel. Acta Math. 27 (1988), 13–22.

    MATH  MathSciNet  Google Scholar 

  66. _____, Periodic and stationary trajectories of flows and ordinary differential equations, Univ. Iagel. Acta Math. 27 (1988), 29–37.

    MATH  MathSciNet  Google Scholar 

  67. M. Nagumo, On the periodic solution of an ordinary differential equation of second order (1944), Zenkoku Shijou Suugaku Danwakai, 54–61 (Japanese); English transl. in Mitio Nagumo Collected Papers, Springer, 1993, pp. 279–283.

    Google Scholar 

  68. R. Ortega, Some applications of the topological degree to stability theory, Topological Methods in Differential Equations and Inclusions (A. Granas and M. Frigon, eds.), Kluwer, Dordrecht, 1995, pp. 377–409.

    Google Scholar 

  69. J. Pejsachowicz and A. Vignoli, On the topological coincidence degree for perturbations of Fredholm operators, Boll. Un. Mat. Ital. (5) 17-B (1980), 1457–1466.

    MathSciNet  Google Scholar 

  70. E. Picard, Mémoire sur la théorie des équations aux dérivés partielles et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145–210.

    Google Scholar 

  71. V. A. Pliss, Nonlocal Problems of the Theory of Oscillations, Academic Press, New York, 1966.

    MATH  Google Scholar 

  72. H. Poincaré, Sur certaines solutions particulières du problèeme des trois corps, C.R. Acad. Sci. Paris Sér. I 97 (1883), 251–252.

    Google Scholar 

  73. _____, Sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (4) 2 (1886), 151–217.

    MATH  Google Scholar 

  74. _____, Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 (1890), 1–270.

    MATH  Google Scholar 

  75. _____, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375–407.

    Google Scholar 

  76. D. Rachinskiĭ, Multivalent guiding functions in forced oscillation problems, Nonlinear Anal. 26 (1996), 631–639.

    Article  MathSciNet  Google Scholar 

  77. R. Reissig, On the existence of periodic solutions of a certain non-autonomous differential equations, Ann. Mat. Pura Appl. (4) 85 (1970), 235–240.

    MATH  MathSciNet  Google Scholar 

  78. E. Rothe, A relation between the type number of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr. 4 (1950–51), 12–27.

    MathSciNet  Google Scholar 

  79. N. Rouche and J. Mawhin, Ordinary Differential Equations. Stability and Periodic Solutions, Pitman, Boston, 1980.

    MATH  Google Scholar 

  80. K. P. Rybakowski, Some remarks on periodic solutions of Carathéodory RFDES via Ważewski principle, Riv. Mat. Univ. Parma (4) 8 (1982), 377–385.

    MATH  MathSciNet  Google Scholar 

  81. H. Schaefer, Ueber die Methode der a-priori Schranken, Math. Ann. 129 (1955), 415–416.

    Article  MATH  MathSciNet  Google Scholar 

  82. J. Schauder, Der Fixpunktsatz in Funktionalraümen, Studia Math. 2 (1930), 171–180.

    MATH  Google Scholar 

  83. R. Srzednicki, On rest points of dynamical systems, Fund. Math. 126 (1985), 69–81.

    MATH  MathSciNet  Google Scholar 

  84. _____, Periodic and constant solutions via topological principle of Ważewski, Univ. Iagel. Acta Math. 26 (1987), 183–190.

    MATH  MathSciNet  Google Scholar 

  85. _____, A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Sém. Anal. Moderne, vol. 22, Université de Sherbrooke, 1992.

    Google Scholar 

  86. _____, Periodic and bounded solutions in blocks for time-periodic non-autonomous ordinary differential equations, Nonlinear Anal. 22 (1994), 707–737.

    Article  MATH  MathSciNet  Google Scholar 

  87. _____, On periodic solutions of planar polynomial differential equations with periodic coefficients, J. Differential Equations 114 (1994), 77–100.

    Article  MATH  MathSciNet  Google Scholar 

  88. _____, On solutions of two-point boundary value problems inside isolating segments, Topol. Methods Nonlinear Anal. 13 (1999), 73–89.

    MATH  MathSciNet  Google Scholar 

  89. _____, On periodic solutions inside isolating chains, J. Differential Equations 165 (2000), 42–60.

    Article  MATH  MathSciNet  Google Scholar 

  90. V. Taddei, Bound sets for first order differential equations with general linear two-point boundary conditions, Dynam. Contin. Discrete Impuls. Systems Ser. A 9 (2002), 133–150.

    Article  MATH  MathSciNet  Google Scholar 

  91. _____, Periodic solutions for certain systems of planar complex polynomial equations, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 623–637.

    MATH  MathSciNet  Google Scholar 

  92. K. Thews, Der Abbildungsgrad von Vektorfelden zu stabilen Ruhelagen, Arch. Math. (Basel) 52 (1989), 71–74.

    Article  MATH  MathSciNet  Google Scholar 

  93. _____, On a topological obstruction to regular forms of stability, Nonlinear Anal. 22 (1994), 347–351.

    Article  MATH  MathSciNet  Google Scholar 

  94. G. Villari, Soluzioni periodiche di una classe di equazioni differenziali, Ann. Mat. Pura Appl. (4) 73 (1966), 103–110.

    MATH  MathSciNet  Google Scholar 

  95. P. Volkmann, Zur Definition des Koinzidenzgrades, preprint (1981).

    Google Scholar 

  96. _____, Démonstration d'un théorème de coincidence par la méthode de Granas, Bull. Soc. Math. Belgique B 36 (1984), 235–242.

    Google Scholar 

  97. T. Ważewski, Sur un principe topologique pour l'examen de l'allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math. 20 (1947), 279–313.

    MathSciNet  Google Scholar 

  98. F. Zanolin, Bound sets, periodic solutions and flow-invariance for ordinary differential equations in \(\mathbb{R}^n \) : some remarks, Rend. Istit. Mat. Univ. Trieste 19 (1987), 76–92.

    MATH  MathSciNet  Google Scholar 

  99. _____, Some remarks about persistence for differential systems and processes, Advanced Topics in the Theory of Dynamical Systems, (Trento, 1987), Academic Press, San Diego, 1989, pp. 253–266.

    Google Scholar 

  100. _____, Continuation theorems for the periodic problem via the translation operator, Rend. Sem. Mat. Univ. Polit. Torino 54 (1996), 1–23.

    MATH  MathSciNet  Google Scholar 

  101. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I, Springer, New York, 1986.

    MATH  Google Scholar 

  102. H. Żołądek, The method of holomorphic foliations in planar periodic systems. The case of Riccati equation, J. Differential Equations 165 (2000), 143–173.

    Article  MathSciNet  MATH  Google Scholar 

  103. _____, Periodic planar systems without periodic solutions, Qualitative Theory Dynamical Systems 2 (2001), 45–60.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Mawhin, J. (2005). Topological Fixed Point Theory and Nonlinear Differential Equations. In: Brown, R.F., Furi, M., Górniewicz, L., Jiang, B. (eds) Handbook of Topological Fixed Point Theory. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3222-6_22

Download citation

Publish with us

Policies and ethics