Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 185))

  • 1268 Accesses

Abstract

An overview of the heat generation phenomena in SOI LDMOS transistors, mainly due to the Joule effect, is provided in this work. The distribution of the heat generation along the SOI LDMOS cross-section depends on the technological and geometrical parameters and the applied bias. Reported data and results extracted from simulation, theory and experiment are used to give physical insight into the heat generation mechanisms. The analysis of the heat generation is of utmost importance to derive the 3D dynamic temperature distribution at short time operation. An accurate temperature prediction at the source, drain and channel regions is desirable for improved electro-thermal models and for the study of the electromigration in interconnects. Moreover, information on temperature peaks is crucial to understand the failure mechanisms in power LDMOS transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Murari, Reliability of Smart Power devices, Microelectronics Reliability, 37(11), 1735–1742 (1997).

    Article  Google Scholar 

  2. J. A. van der Pol, A.W. Ludikhuize, H. G. A. Huizing, B. van Velzen, R. J. E. Hueting, J.F. Mom, G. van Lijnschoten, G. J. J. Hessels, E.F. Hooghoudt, R. van Huizen, M. J. Swanenberg, J. H. H. A. Egbers, F. van den Elshout, J. J. Koning, H. Schligtenhorst, J. Soeteman, A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications, in: Proc. ISPSD'00, 2000, pp. 327–330.

    Google Scholar 

  3. F. Udrea, D. Gardner, K. Sheng, A. Popescu, H. T. Lim and W. I. Milne, SOI Power Devices, Electronics & Communication Engineering Journal, 22–40 (2000).

    Google Scholar 

  4. V. d'Alessandro and N. Rinaldi, A critical review of thermal models for electro-thermal simulation, Solid-State Electronics 46(4), 487–496 (2002).

    Article  Google Scholar 

  5. L. Codecasa, D. D'amore and P. Maffezoni, Compact modeling of electrical devices for electrothermal analysis, IEEE Trans. Circuits and Systems 50(4), 465–476 (2003).

    Article  Google Scholar 

  6. L. Zhu, K. Vafai and L. Xu, Device temperature and heat generation in power Metal-Oxide Semiconductor Field Effect Transistor, J. of Thermophysics and Heat Transfer 13(2), 185–194 (1999).

    Google Scholar 

  7. L. Zhu, K. Vafai and L. Xu, Modeling of non-uniform heat dissipation and prediction of hot spots in power transistors, Int. J. of Heat and Mass Transfer 41(15), 2399–2407 (1998).

    Article  Google Scholar 

  8. Y. Wang, P. Juliano, S. Joshi and E. Rosenbaum, Electrothermal modeling of ESD diodes in Bulk-Si and SOI technologies, Microelectronics Reliability 41(11), 1781–1787 (2001).

    Article  Google Scholar 

  9. Y. K. Leung, S. C. Kuehne, V. S. K. Huang, C. T. Nguyen, A. K. Paul, J. D. Plummer and S.S. Wong, Spatial temperature profiles due to non-uniform self-heating in LDMOS's in thin SOI, IEEE El. Dev. Lett. 18(1), 13–15 (1997).

    Article  Google Scholar 

  10. Y. K. Leung, Y. Suzuki, K. E. Goodson and S.S. Wong, Self-heating effect in lateral DMOS on SOI. in: Proc. ISPSD '91, 1991, pp. 27–30.

    Google Scholar 

  11. E. Arnold, H. Pein and S. P. Herko. Comparison of self-heating effects in bulk-silicon and SOI high-voltage devices, in: Proc. IEDM'94, 1994, pp. 813–816.

    Google Scholar 

  12. H. Neubrand, R. Constapel, R. Boot, M. Fullman and A. Boose, Thermal behaviour of lateral devices on SOI substrates, in: Proc. ISPSD '94, 1994, pp. 123–127.

    Google Scholar 

  13. S. Rzepka, K. Banerjee, E. Meusel and C. Hu, Characterization of self-heating in advanced VLSI interconnect lines based on thermal finite element simulation, IEEE Trans Compon. Pack. 21(3), 406–411 (1998).

    Article  Google Scholar 

  14. A. Pacelli, P. Palestri and M. Mastrapasqua, Compact modeling of thermal resistance in bipolar transistors on bulk and SOI substrates, IEEE Trans. El. Dev. 49(6), 1027–1033 (2002).

    Article  Google Scholar 

  15. M. Ashegui, B. Behkam, K. Yazdani, R. Joshi and K. E. Goodson, Thermal conductivity model for thin Silicon-on-Insulator layers at high temperatures, in: Proc. Int. SOI Conf. 2002, 2002, pp. 51–52.

    Google Scholar 

  16. M. Berger, Z. Chai, Estimation of heat transfer in SOI-MOSFET's, IEEE Trans. El. Dev. 38(4), 871–875 (1991).

    Article  Google Scholar 

  17. B. M. Tenbroek, R. J. Bunyan, G. Whiting, W. Redman-White, M. J. Uren, K. M. Brunson, M. S. L. Lee and F. Edwards, Measurement of buried oxide thermal conductivity for accurate electrothermal simulation of SOI devices, IEEE Trans. El. Dev. 46(1), 251–253 (1999).

    Article  Google Scholar 

  18. M. Berger, G. Burbach, Thermal time constants in SOI-MOSFETs, in: Proc. Int. SOI Conf. '91, 1991, pp. 24–25.

    Google Scholar 

  19. A. Raman, D. G. Walker and T. S. Fisher, Simulation of nonequilibrium thermal effects in power LDMOS transistors, Solid-State Electronics 47(8), 1265–1273 (2003).

    Article  Google Scholar 

  20. D. M. Garner, F. Udrea, H. T. Lim, G. Ensell, A. E. Popescu, K. Sheng and W. I. Milne, Silicon on Insulator Power Integrated Circuits, in: Proc. ISPS'00, 2000, pp. 123–129.

    Google Scholar 

  21. J. Roig, D. Flores, J. Urresti, S. Hidalgo, J. Rebollo., Modeling of non-uniform heat generation in Thin-Film SOI LDMOS Transistors, in: Proc. ISPS'04, 2004 (to appear).

    Google Scholar 

  22. P. Perugupalli, Y. Xu and K. Shenai, Measurement of thermal and packaging limitations in LDMOSFETs for RFIC applications, in: Proc. IMTC/98, vol.1, 1998, pp. 160–164.

    Google Scholar 

  23. J. M. Park, R. Klima and S. Selberherr, High-voltage lateral trench gate SOI-LDMOSFETs, Microelectronics Journal 35(3), 299–304 (2004).

    Article  Google Scholar 

  24. J. Roig, D. Flores, S. Hidalgo, M. Vellvehi, J. Rebollo and J. Millán, Study of novel techniques for reducing self-heating effects in SOI power LDMOS, Solid-State Electronics 46(12), 2123–2133 (2002).

    Article  Google Scholar 

  25. J. Roig, D. Flores, S. Hidalgo, M. Vellvehi, I. Cortes and J. Rebollo, A linear heat generation thermal model for LDMOS basic cell self-heating analysis in transient state, in: Proc. THERMINIC, 2003, pp. 139–142.

    Google Scholar 

  26. J. Roig, D. Flores, X. Jordà, J. Urresti, M. Vellvehi, J. Rebollo, An analytical model to predict the short-circuit thermal failure in SOI LDMOS with Linear Doping Profile, in: Proc. MIEL'04, 2004 (to appear).

    Google Scholar 

  27. R. C. Joy and E. S. Schlig, Thermal properties of very fast transistors, IEEE Trans. El. Dev. 17(8), 586–594 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Roig, J., Flores, D., Urresti, J., Hidalgo, S., Rebollo, J. (2005). Heat Generation Analysis in SOI LDMOS Power Transistors. In: Flandre, D., Nazarov, A.N., Hemment, P.L. (eds) Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment. NATO Science Series II: Mathematics, Physics and Chemistry, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3013-4_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3013-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3011-6

  • Online ISBN: 978-1-4020-3013-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics