Skip to main content

Generating Functions and Wavelet-Like Decompositions

  • Conference paper
Topics in Analysis and its Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 147))

  • 826 Accesses

Abstract

A generalization of periodic wavelet theory is presented. The obtained results are applicable for constructing fast and stable algorithms for decompositions by classical orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nersessian, A.B. (2000) A family of approximation formulas and some applications, Num. Funct. Anal. Optimization, Vol. 21, pp. 227–240.

    MATH  MathSciNet  Google Scholar 

  2. Nersessian, A.B. (1998) Parametric interpolation and some of its applications, Doklady Nats. Akad. Nauk Armen., Vol. 98, pp. 23–30 (Russian).

    MathSciNet  Google Scholar 

  3. Nersessian, A.B. (2000) Periodic decomposition of orthogonal systems, Preprint N 21 — Ar 00, Deposited in ARMNIINTI.

    Google Scholar 

  4. Wolfram, St. (1999) The MATHEMATICA book. Forth edition. Wolfram Media, Cambridge University Press, Cambridge.

    Google Scholar 

  5. Strang, G. and Fix, G. (1973) A Fourier analysis of the finite element variational method, Const. Aspects of Functional Analysis, ed. Geymont, G., pp. 793–840.

    Google Scholar 

  6. Koh, Y.W., Lee, S.L. and Tan, H.H. (1995) Periodic orthogonal splines and wavelets, Appl. Comput. Harmon. Anal., Vol. 2, pp. 201–218.

    Article  MathSciNet  Google Scholar 

  7. Locher, F. (1981) Interpolation on uniform meshes by the translates of one function and related attenuation factors, Math. Comp., Vol. 37, pp. 403–416.

    MATH  MathSciNet  Google Scholar 

  8. Ware, A.F. (1998) Fast approximate Fourier transform for irregularly spaced data, SIAM Review, Vol. 40, pp. 838–856.

    Article  MATH  MathSciNet  Google Scholar 

  9. Potts, D., Steidl, G. and Tasche, M. (2001) Fast Fourier transforms for nonequi-spaced data: A Tutorial. Modern Sampling Theory, eds. Benedetto, J. and Ferreira, P.J.S.G., Mathematics and Applications, Birkhäuser, Boston, pp. 247–270.

    Google Scholar 

  10. Nersessian, A.B. (2001) Quasiexponential function and Fourier quasitransforms. Doklady Nats. Akad. Nauk Armen., Vol. 101, pp. 5–11 (Russian).

    Google Scholar 

  11. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953–1955) Higher transcendental functions, Vol. I-III, McGraw-Hill, New York-Toronto-London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Nersessian, A. (2004). Generating Functions and Wavelet-Like Decompositions. In: Barsegian, G.A., Begehr, H.G.W. (eds) Topics in Analysis and its Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 147. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2128-3_31

Download citation

Publish with us

Policies and ethics