Topics in Analysis and its Applications

  • G. A. Barsegian
  • H. G. W. Begehr

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 147)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Alain Escassut, Nicolas Mai Netti
    Pages 1-10
  3. Cabiria Andreian Cazacu, Victoria Stanciu
    Pages 11-30
  4. Angel Alonso, Arturo Fernández, Javier Pérez
    Pages 31-46
  5. A. A. Mokhon’ko, A. Z. Mokhon’ko
    Pages 91-103
  6. G. A. Barsegian, G. A. Sukiasyan
    Pages 105-118
  7. T. Aliashvili
    Pages 149-161
  8. H. G. Ghazaryan, V. N. Margaryan
    Pages 163-190
  9. A. Okay Çelebi
    Pages 295-309
  10. V. N. Hakobyan, L. L. Dashtoyan
    Pages 377-383
  11. G. Y. Baghdasaryan, Z. N. Danoyan, M. A. Mikilyan
    Pages 385-396
  12. Lenser Aghalovyan
    Pages 403-413
  13. Back Matter
    Pages 453-469

About these proceedings


Most topics dealt with here deal with complex analysis of both one and several complex variables. Several contributions come from elasticity theory. Areas covered include the theory of p-adic analysis, mappings of bounded mean oscillations, quasiconformal mappings of Klein surfaces, complex dynamics of inverse functions of rational or transcendental entire functions, the nonlinear Riemann-Hilbert problem for analytic functions with nonsmooth target manifolds, the Carleman-Bers-Vekua system, the logarithmic derivative of meromorphic functions, G-lines, computing the number of points in an arbitrary finite semi-algebraic subset, linear differential operators, explicit solution of first and second order systems in bounded domains degenerating at the boundary, the Cauchy-Pompeiu representation in L2 space, strongly singular operators of Calderon-Zygmund type, quadrature solutions to initial and boundary-value problems, the Dirichlet problem, operator theory, tomography, elastic displacements and stresses, quantum chaos, and periodic wavelets.


Boundary value problem Complex analysis Derivative Eigenvalue Meromorphic function bounded mean oscillation calculus differential equation logarithm operator theory

Editors and affiliations

  • G. A. Barsegian
    • 1
  • H. G. W. Begehr
    • 2
  1. 1.Institute of Mathematics of National Academy of Sciences of ArmeniaYerevanArmenia
  2. 2.Mathematical InstituteFreie Universität BerlinBerlinGermany

Bibliographic information