Skip to main content

Physiological Targets of Artificial Gravity: The Cardiovascular System

  • Chapter
Artificial Gravity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonutto G, Capelli C, Di Prampero PE (1991) Pedaling in space as a countermeasure to microgravity deconditioning. Microgravity Quarterly 1: 93-101

    Google Scholar 

  • Antonutto G, Linnarsson D, Di Prampero PE (1993) On-Earth evaluation of neurovestibular tolerance to centrifuge simulated artificial gravity in humans. Physiologist 36 (Suppl 1): S85-S87

    Google Scholar 

  • Arbeille P, Pavy-Le Traon A, Fomina G et al. (1995) Femoral flow response to lower body negative pressure: an orthostatic tolerance test. Aviat Space Environ Med 66: 131–136

    Google Scholar 

  • Arbeille P, Sigaudo D, Pavy A et al. (1998). Femoral to cerebral arterial blood flow redistribution and femoral vein distension during orthostatic tests after 4 days in the head-down tilt position or confinement. Eur J Appl Physiol 78: 208–218.

    Article  Google Scholar 

  • Benson AJ (1988) Motion sickness. In: Aviation Medicine. Ernsting J, King P (eds) Butterworths, London, pp 318-338

    Google Scholar 

  • Bjurstedt H, Rosenhamer G, Wigertz O (1968) High-g environment and responses to graded exercise. J Appl Physiol 25: 713-719

    Google Scholar 

  • Blomqvist CG, Stone HL (1983). Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology, Section 2: The Cardiovascular System. Shepherd JT, Abboud FM (eds) Vol III, Part 2. Am Physiol Soc, Bethesda, Maryland, pp 1025-1063

    Google Scholar 

  • Burton RR (1997) Artificial gravity in space flight. J Gravit Physiol 4: P17-P20.

    MathSciNet  Google Scholar 

  • Burton RR, Meeker LJ (1994) Taking gravity to space. J Gravit Physiol 1: P15-P18

    Google Scholar 

  • Caiozzo VJ, Rose-Grotton C, Baldwin KM et al. (2004) Hemodynamic and metabolic responses to hypergravity on a human-powered centrifuge. Aviat Space Environ Med 75: 101-107

    Google Scholar 

  • Capelli C, Antonutto G, Azabji Kenfack M et al. (2006) Factors determining the kinetics of VO2max decay during bed-rest: implications for VO2max limitation. Eur J Appl Physiol, in press

    Google Scholar 

  • Capelli C, Rosa G, Butti F et al. (1993) Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol 67: 144-149

    Article  Google Scholar 

  • CardĹ­s D (1994) Artificial gravity in space and in medical research. J Gravit Physiol 1: P19-P22

    Google Scholar 

  • ClĂ©ment G, Pavy-LeTraon A (2004) Centrifugation as a countermeasure during actual and simulated microgravity: A review. Eur J Appl Physiol 92: 235-248

    Article  Google Scholar 

  • Convertino VA (1997) Cardiovascular consequences of bed rest : effects on maximal oxygen uptake. Med Sci Sports Exerc 29: 191-196

    Google Scholar 

  • Convertino VA, Doerr DF, Flores JF et al. (1988) Leg size and muscle functions associated with leg compliance. J Appl Physiol 64: 1017–1021

    Google Scholar 

  • Di Prampero PE, Antonutto G (1996) Effects of Microgravity on Muscle Power: Some Possible Countermeasures. In: Proceedings of the ESA Symposium on Space Station Utilization, ESA Publication Division, Noordwijk, ESA-SP-385, pp 103-106

    Google Scholar 

  • Di Prampero PE, Antonutto G (1997) Cycling in space to simulate gravity. Int J Sports Med 18: S324-S326

    Article  Google Scholar 

  • Di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Physiol 82: 345-360

    Article  Google Scholar 

  • Ferretti G, Antonutto G, Denis C et al. (1997) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol (Lond) 501: 677-686

    Article  Google Scholar 

  • Ferretti G, Girardis M, Moia C et al. (1998) The effects of prolonged bed rest on cardiovascular oxygen transport during submaximal exercise in humans. Eur J Appl Physiol 78: 398-402

    Article  Google Scholar 

  • Folkow B, Haglund U, Jodal M et al. (1971) Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand 81: 157-163

    Google Scholar 

  • Fowler KT, Read J (1961) Cardiac oscillations in expired gas tensions, and regional pulmonary blood flow. J Appl Physiol 16: 863-868

    Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Bennett BS et al. (1992) Short duration space flight impairs human carotid baroreceptor – cardiac reflex responses. J Appl Physiol 73: 664-671

    Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM et al. (1994) Space flight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 77: 1776-1783

    Google Scholar 

  • Fu Q, Levine BD, Pawelczyk JA et al. (2002) Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol (Lond) 544: 653–664

    Article  Google Scholar 

  • Gauer OH, Thron HL (1965) Postural changes in the circulation. In: Handbook of Physiology, Section 2: Circulation. Hamilton WF (ed) Am Physiol Soc, Washington, DC, Vol 3, Chap 67, pp 2409-2439

    Google Scholar 

  • Girardis M, Linnarsson D, Moia C et al. (1999) Oxygen cost of dynamic leg exercise on a cycle ergometer: effects of gravity acceleration. Acta Physiol Scand 166: 239-246

    Article  Google Scholar 

  • Glaister DH, Prior ARJ (2000) The effects of long duration acceleration. Aviation Medicine 5: 129-147

    Google Scholar 

  • Green NDC (2000) Protection against long duration acceleration. Aviation Medicine 5: 148-156

    Google Scholar 

  • Greenleaf JE, Gundo DP, Watenpaugh DE et al. (1996) Cycle-powered short radius (1.9 m) centrifuge: Exercise vs passive acceleration. J Gravit Physiol 3: 61-62

    Google Scholar 

  • Greenleaf JE, Gundo DP, Watenpaugh DE et al. (1997) Cycle-powered short radius (1.9 m) centrifuge: Effect of exercise versus passive acceleration on heart rate in humans. NASA Technical Memorandum 110433

    Google Scholar 

  • Henry J, Gauer O, Kety S et al. (1951) Factors maintaining cerebral circulation during gravitational stress. J Clin Invest 30: 292-301

    Article  Google Scholar 

  • Herault S, Fomina G, Alferova I et al. (2000) Cardiac, arterial and venous adaptation to weightlessness during 6- month MIR spaceflights with and without thigh cuffs. Eur J Appl Physiol 81: 384-390

    Article  Google Scholar 

  • Iellamo F, Di Rienzo M, Lucini D et al. (2006) Muscle metaboreflex contribution to cardiovascular regulation during dynamic exercise in microgravity: Insights from the STS-107 Columbia Shuttle Mission. J Physiol (Lond) 572: 829-838

    Google Scholar 

  • Keller TS, Strauss AM, Szpalsky M (1992) Prevention of bone loss and muscle atrophy during manned space flight. Microgravity Quarterly 2: 89-102

    Google Scholar 

  • Lackner JR, DiZio P (2000) Artificial gravity as a countermeasure in long-duration space flight. J Neurosci Res 52: 169-176

    Article  Google Scholar 

  • Lackner JR, Graybiel A (1986) The effective intensity of Coriolis cross-coupling stimulation is gravitoinertial force dependent: implication for space motion sickness. Aviat Space Environ Med 57: 229-235

    Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE et al. (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81: 686-694

    Google Scholar 

  • Linnarsson D (1980) Metabolic responses to gravitational changes. In: Exercise Bioenergetics and Gas Exchange. Cerretelli P, Whipp BJ (eds) Elsevier/North-Holland Biomedical Press, Amsterdam, pp 297-302

    Google Scholar 

  • Linnarsson D, Rosenhamer G (1968) Exercise and arterial pressure during simulated increase of gravity. Acta Physiol Scand 74: 50-57

    Google Scholar 

  • Linnarsson D, Sundberg CJ, Tedner B et al. (1996) Blood pressure and heart rate responses to sudden changes of gravity during exercise. Am J Physiol 270: H2132-H2142

    Google Scholar 

  • Nicogossian AE (1994) Space Physiology and Medicine. Lea and Febiger, New York

    Google Scholar 

  • Nunneley SA, Shindell DS (1975) Cardiopulmonary effects of combined exercise and +Gz acceleration. Aviat Space Environ Med 46: 878-882

    Google Scholar 

  • Perhonen MA, Franco F, Lane LD et al. (2001) Cardiac atrophy after bed rest and space flight. J Appl Physiol 91: 645-653

    Google Scholar 

  • Prisk GK, Guy HGB, Elliott AR et al. (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76: 1730-1738

    Google Scholar 

  • Rohdin M, Linnarsson D (2002) Differential changes of lung diffusing capacity and tissue volume in hypergravity. J Appl Physiol 93: 931-935

    Google Scholar 

  • Rohdin M, Petersson J, Mure M et al. (2003a) Protective effect of prone posture against hypergravity-induced arterial hypoxaemia in humans. J Physiol (Lond) 548: 585-591

    Article  Google Scholar 

  • Rohdin M, Petersson J, Sundblad P et al. (2003b) Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. J Appl Physiol 95: 3-10

    Google Scholar 

  • Rohdin M, Petersson J, Mure M et al. (2004) Distribution of lung ventilation and perfusion in prone and supine humans exposed to hypergravity. J Appl Physiol 97: 675-682

    Article  Google Scholar 

  • Rosenhamer G (1967) Influence of increased gravitational stress on the adaptation of cardiovascular and pulmonary function to exercise. Acta Physiol Scand Suppl 276: 1-61

    Google Scholar 

  • Rosenhamer G (1968). Antigravity effects of leg exercise. Acta Physiol Scand 72: 72-80

    Google Scholar 

  • Rowell LB (1993) Human Cardiovascular Control. Oxford University Press, New York

    Google Scholar 

  • Saltin B, Blomqvist CG, Mitchell RC et al. (1968) Response to exercise after bed rest and after training. Circulation 38: Suppl 7: 1-78

    Google Scholar 

  • Shykoff BE, Farhi LE, Olszowka AJ et al. (1997) Cardiovascular response to submaximal exercise in sustained microgravity. J Appl Physiol 81: 26-32

    Google Scholar 

  • Sjöstrand T (1962) The regulation of the blood volume distribution in man. Acta Physiol Scand 26: 312-327

    Article  Google Scholar 

  • Stegall HF (1966) Muscle pumping in the dependent leg. Circ Res 19: 180-190

    Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Shipov AA (1997) Biomedical aspects of artificial gravity.J Gravit Physiol 4: P27-P28

    Google Scholar 

  • Wasserman K, Van Kessel AL, Burton GG (1967) Interaction of physiological mechanisms during exercise. J Appl Physiol 22: 71-85

    Google Scholar 

  • Young LR, Hecht H, Lyne LE et al. (2001) Artificial gravity: Head movements during short-radius centrifugation. Acta Astronautica 49: 215-226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Antonutto, G., Clément, G., Ferretti, G., Linnarsson, D., Traon, A.PL., Di Prampero, P. (2007). Physiological Targets of Artificial Gravity: The Cardiovascular System. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics