Skip to main content
Log in

Centrifugation as a countermeasure during actual and simulated microgravity: a review

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This paper summarizes what has been learned from studies of the effects of artificial gravity generated by centrifugation in actual and simulated weightless conditions. The experience of artificial gravity during actual space flight in animals and humans are discussed. Studies using intermittent centrifugation during bed rest and water immersion, as a way to maintain orthostatic tolerance and exercise capacity, are reviewed; their results indicate that intermittent centrifugation is a potential countermeasure for maintaining the integrity of these physiological functions in extended space missions. These results can help set guidelines for future experiments aimed at validating the regimes of centrifugation as a countermeasure for space missions. Current and future research projects using artificial gravity conditions in humans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arbeille P, Gauquelin G, Pottier JM, Pourcelot L, Güell A, Gharib C (1992) Results of a 4-week head-down tilt with and without LBNP countermeasure. II. Cardiac and peripheral hemodynamics—comparison with a 25-day spaceflight. Aviat Space Environ Med 63:9–13

    CAS  PubMed  Google Scholar 

  • Arrott AP, Young LR, Merfeld DM (1990) Perception of linear acceleration in weightlessness. Aviat Space Environ Med 61:319–326

    CAS  PubMed  Google Scholar 

  • Benson AJ, Guedry FE, et al (1997) Microgravity vestibular investigations: perception of self-orientation and self-motion. J Vestib Res 7:453–457

    Article  CAS  PubMed  Google Scholar 

  • Berry P, Berry I, Manelfe C (1993) Magnetic resonance imaging evaluation of lower limb muscles during bed rest—a microgravity simulation model. Aviat Space Environ Med 64:212–218

    CAS  PubMed  Google Scholar 

  • Buckey JC, Lane CD, et al (1996) Orthostatic intolerance after space flight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  • Burton RR (1994) Artificial gravity in space flight. J Gravit Physiol 1:15–18

    Google Scholar 

  • Burton RR, Meeker LJ (1992) Physiologic validation of a short-arm centrifuge for space applications. Aviat Space Environ Med 63:476–481

    CAS  PubMed  Google Scholar 

  • Cardus D, Diamandis P (1990) Development of an artificial gravity sleeper (AGS). Physiologist 33:112–113

    Google Scholar 

  • Cardus DP, McTaggert WG (1993) The cardiovascular response to the AGS. Physiologist 36:155–157

    Google Scholar 

  • Charles JB, Lathers CM (1994) Summary of lower body negative pressure experiments during space flight. J Clin Pharmacol 34:571–583

    CAS  PubMed  Google Scholar 

  • Chou JL, Leftheriotis GPN, Stad NJ, Arndt NF, Jackson CGR, Simmonson S, Barnes PR, Greenleaf JE (1998) Human physiological responses to cycle ergometer leg exercise during +Gz acceleration. NASA Tech Memo 112237:1–22

    Google Scholar 

  • Clarke AH, Engelhorn A, Hamann CH, Schonfeld U (1999) Measuring the otolith-ocular response by means of unilateral radial acceleration. Ann NY Acad Sci 871:387–391

    CAS  PubMed  Google Scholar 

  • Clément G, Moore S, Raphan T, Cohen B (2001a) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138:410–418

    PubMed  Google Scholar 

  • Clément G, Deguine O, Parant M, Costes-Salon MC, Vasseur-Clausen P, Pavy-Le Traon A (2001b) Effects of cosmonaut vestibular training vestibular function prior to space flight. Eur J Appl Physiol 85:539–545

    Google Scholar 

  • Clément G, Maciel F, Deguine O (2002) Perception of tilt and ocular torsion of normal subjects during eccentric rotation. Otol Neurotol 23:958–966

    Article  PubMed  Google Scholar 

  • Cohen GH, Brown WK (1969) Changes in ECG control during prolonged +Gz acceleration. Aerosp Med 40:874–879

    CAS  PubMed  Google Scholar 

  • Convertino VA (1996) Exercise and adaptation to microgravity environment. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, section 4: environmental physiology, III. The gravitational environment. Oxford University Press, Oxford, pp 815–843

  • Convertino VA (1999) G-factor as a tool in basic research: mechanisms of orthostatic tolerance. J Gravit Physiol 6:73–76

    Google Scholar 

  • Convertino VA (2001) Mechanisms of blood pressure regulation that differ in men repeatedly exposed to high G acceleration. Am J Physiol Regul Integr Comp Physiol 280:947–958

    Google Scholar 

  • Convertino VA (2002) Mechanisms of microgravity-induced orthostatic intolerance and implications of effective countermeasures: overview and future directions. J Gravit Physiol 9:1–12

    PubMed  Google Scholar 

  • Curthoys IS, Haslwanter T, Black RA, Burgess AM, Halmagyi GM, Topple AN, Todd MJ (1998) Off-center yaw rotation: effect of naso-occipital linear acceleration on the nystagmus response of normal human subjects and patients after unilateral vestibular loss. Exp Brain Res 123:425–438

    CAS  PubMed  Google Scholar 

  • Di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Physiol 82:345–360

    PubMed  Google Scholar 

  • Fortney SM (1991) Development of lower body negative pressure as a countermeasure for orthostatic intolerance. J Clin Pharmacol 31:888–892

    CAS  PubMed  Google Scholar 

  • Fortney SM, Schneider VS, Greenleaf JE (1996) The physiology of bed rest. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, section 4: environmental physiology, III. The gravitational environment. Oxford University Press, Oxford, pp 889–939

  • Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141

    PubMed  Google Scholar 

  • Galle RR, Yemel’yanov MD, Kitayev-Smyk LA, Klochkov AM (1974) Some regularities in adaptation to prolonged rotation. Kosm Biol Aviakosm Med 8:53–60

    CAS  Google Scholar 

  • Gazenko OG, Kasyan II (1990) Pathogenesis and problems of efficacity of countermeasures in weightlessness. In: Gazenko OG, Kasyan II (eds) Physiological problems of weightlessness. Medical Press, Moscow, pp198–256

  • Gharib C, Maillet A, Gauquelin G, Allevard AM, Guell A, Cartier R, Arbeille P (1992) Results of a 4-week head-down tilt with and without LBNP countermeasure. I. Volume regulating hormones. Aviat Space Environ Med 1:3–8

    Google Scholar 

  • Gillingham KK (1987) G-tolerance standards for aircrew and selection. Aviat Space Environ Med 58:1024–1026

    CAS  PubMed  Google Scholar 

  • Godwin R (1999) Gemini 11. The NASA mission reports. Apogee Books, Burlington

  • Greenleaf JE, Van Beaumont W, et al (1973) Effects of rehydration of +Gz tolerance after 14-days bed rest. Aerosp Med 44:715–722

    CAS  PubMed  Google Scholar 

  • Greenleaf JE, Gundo DP, Watenpaugh DE, Mulenburg GM, McKenzie MA, Looft-Wilson R, Hargens AR (1977a) Cycle-powered short radius (1.9 m) centrifuge: effect of exercise versus passive acceleration on heart rate in humans. NASA Tech Memo 110433:1–10

    Google Scholar 

  • Greenleaf JE, Stinnett HO, et al (1977b) Fluid and electrolyte shifts in women during +Gz acceleration after 15 days bed rest. J Appl Physiol: 42:67–73

    Google Scholar 

  • Greenleaf JE, Chou JL, et al (1999) Short-arm (1.9 m) +2.2 Gz acceleration: isotonic exercise load-O2 uptake relationship. Aviat Space Environ Med 70:1173–1182

    CAS  PubMed  Google Scholar 

  • Guedry FE (1992) Perception of motion and position relative to the earth. An overview. Ann NY Acad Sci 656:315–328

    CAS  PubMed  Google Scholar 

  • Güell A, Braak L, Le Traon AP, Gharib C (1991) Cardiovascular adaptation during simulated microgravity: lower body negative pressure to counter orthostatic hypotension. Aviat Space Environ Med 62:331–335

    PubMed  Google Scholar 

  • Hastreiter D, Young LR (1997) Effects of a gravity gradient on human cardiovascular responses. J Gravit Physiol 4:23–26

    Google Scholar 

  • Hu G, Howard I, Palmisano S (1999) The role of intrinsic and extrinsic polarity in generating reorientation illusions. Invest Opthalmol Vis Sci 40: S801

    Google Scholar 

  • Iwasaki K, Hirayanagi K, Sasaki T, Kinoue T, Ito M, Miyamoto A, Igarashi M, Yajima K (1998) Effects of repeated long duration +2Gz load on man’s cardiovascular function. Acta Astronaut 42:175–183

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki KI, Sasaki T, et al (2001) Usefulness of daily +2Gz load as a countermeasure against physiological problems during weightlessness. Acta Astronaut 49:227–235

    Article  CAS  PubMed  Google Scholar 

  • Korolkov VI, Kozlovskaya IB, et al (2001) Efficacy of periodic centrifugation of primates during 4-week head-down tilt. Acta Astronaut 49:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kotovskaya AR, Illyin EA, Korolkov VI, Shipov AA (1980) Artificial gravity in space flight. Physiologist 23:27–29

    Google Scholar 

  • Kotovskaya AR, Galle RR, Shipov AA (1981) Soviet research on artificial gravity. Kosm Biol Aviakosm Med 2:72–79

    Google Scholar 

  • Kovalenko EA (1977) Chief methods of modeling the biological effects of weightlessness. Kosm Biol Aviakosm Med 11:3–9

    CAS  Google Scholar 

  • Kozlovskaya IB, Grigoriev AI, et al (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36:661–668

    Article  CAS  PubMed  Google Scholar 

  • Krettenberg A, Baldwin KM, Bagian JP, Cotten S, Witmer J, Caiozzo VJ (1998) The “Space Cycle” self powered human centrifuge. A proposed countermeasure for prolonged human spaceflight. Aviat Space Environ Med 69:229–241

    Google Scholar 

  • Lee SM, Bennett BS, Hargens AR, Watenpaugh DE, Ballard RE, Murthy G, Ford SR, Fortney SM (1997) Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest. Med Sci Sports Exerc 29:892–900

    CAS  PubMed  Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist G (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81:686–694

    CAS  PubMed  Google Scholar 

  • Lightfoot JT, Hilton F, Fortney SM (1991) Repeatability and protocol comparability of presyncopal symptoms limited lower body negative pressure exposures. Aviat Space Environ Med 62:19–25

    CAS  PubMed  Google Scholar 

  • Ludwig DA, Convertino VA, et al (1987) Logistic risk model for the unique effects of inherent aerobic capacity on +Gz tolerance before and after simulated weightlessness. Aviat Space Environ Med 58:1057–1061

    CAS  PubMed  Google Scholar 

  • Ludwig DA, Krock LP, Doerr DA, Convertino VA (1998) Mediating effect of onset rate on the relationship between +Gz and LBNP tolerance and cardiovascular reflexes. Aviat Space Environ Med 69:630–638

    CAS  PubMed  Google Scholar 

  • Lyne LE (2000) Artificial gravity: evaluation of adaptation to head movements during short-radius centrifugation using subjective measures. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Maillet A, Fagette S, Allevard AM, Pavy-Le Traon A, Güell A, Gharib C, Gauquelin G (1996) Cardiovascular and hormonal response during a 4-week head-down tilt with and without exercise and LBNP countermeasures. J Gravit Physiol 3:37–48

    CAS  Google Scholar 

  • Moore ST, Clément G, Raphan T, Cohen B (2000) The human response to artificial gravity in a weightlessness environment: Results from the Neurolab centrifugation experiments. In: El-Genk MS (ed) Space technology and applications international forum 2000. American Institute of Physics, College Park, pp 206–211

  • Moore S, Clément G, Raphan T, Cohen B (2001) Ocular counterrolling induced by centrifugation during orbital space flight. Exp Brain Res 137:323–335

    CAS  PubMed  Google Scholar 

  • Murthy G, Watenpaugh DE, Ballard RE, Hargens AR (1994) Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity. J Appl Physiol 76:2742–2748

    Article  CAS  PubMed  Google Scholar 

  • Newsom BD, Goldenrath WL, et al (1977) Tolerance of females to +Gz centrifugation before and after bedrest. Aviat Space Environ Med 48:327–331

    CAS  PubMed  Google Scholar 

  • Nyberg JW, Grimes RH, White WJ (1966) Consequence of heart-to-foot acceleration gradient for tolerance to positive acceleration (+Gz). Aerosp Med 37:665–668

    CAS  PubMed  Google Scholar 

  • Offerhaus L, Dejongh JC (1967) Homeostatic regulation of circulation during prolonged gravitational stress (+Gz). Aerosp Med 38:468–473

    CAS  PubMed  Google Scholar 

  • Paloski WH, Young LR (1999) Artificial gravity worskhop, League City, Texas, USA: proceedings and recommendations. NASA Johnson Space Center and National Space Biomedical Research Institute, Houston

  • Parker JF, Jones WL (1975) Biomedical results from Apollo. NASA Publication Office, Washington

  • Roth EM (1968) Acceleration. In: Compendium of human responses to the aerospace environment. NASA Contract Rep 1205:25–41

    Google Scholar 

  • Sandler H, Webb P, et al (1983) Evaluation of a reverse gradient garment for prevention of bed-rest deconditioning. Aviat Space Environ Med 54:191–201

    CAS  PubMed  Google Scholar 

  • Sasaki T, Iwasaki KI, et al (1999) Effects of daily 2 Gz load on human cardiovascular function during weightlessness simulation using 4-day head-down bed rest. Jpn J Aerosp Environ Med 36:113–123

    CAS  Google Scholar 

  • Sawin CF, Baker E, Black FO (1998) Medical investigations and resulting countermeasures in support of 16-day space shuttle missions. J Gravit Physiol 5:1–12

    CAS  PubMed  Google Scholar 

  • Schneider SM, Watenpaugh DE, Lee SM, Ertl AC, Williams WJ, Ballard RE, Hargens AR (2002) Lower-body negative-pressure exercise and bed-rest-mediated orthostatic intolerance. Med Sci Sports Exerc 34:1446–1453

    Article  PubMed  Google Scholar 

  • Shipov AA (1977) Artificial gravity. In: Nicogossian A, Mohler SR, Gazenko OG, Grigoriev AI (eds) Space biology and medicine, vol 3. AIAA and Nauka Press, Moscow, pp 349–363

  • Shulzhenko EB, Vil-Viliams IF (1992) Short radius centrifuge as a method in long-term space flights. Physiologist 35:122–125

    Google Scholar 

  • Stone RW (1973) An overview of artificial gravity. In: Fifth symposium on the role of vestibular organs in space exploration. NASA SP 314:23–33

    Google Scholar 

  • Stone RW, Letko W, Hook WR (1967) Examination of a possible flight experiment to evaluate an onboard centrifuge as a therapeutic device. NASA SP 115:245–255

    Google Scholar 

  • Sulzman FM, Wolfe JW (1991) Neurosciences research in space: future direction. Acta Astronaut 23:289–293

    Article  CAS  PubMed  Google Scholar 

  • Vernikos J (1997) Artificial gravity intermittent centrifugation as a space flight countermeasure. J Gravit Physiol 4:13–16

    Google Scholar 

  • Vernikos J, Pharm B, Ludwig DA, Ertl AC, Wade CE, Keil L, O’Hara D (1996) Effect of standing or walking on physiological changes induced by head down bed rest: implications for space flight. Aviat Space Environ Med 67:1069–1079

    CAS  PubMed  Google Scholar 

  • Vil-Viliams IF (1994) Principle approaches to selection of the short-arm centrifuge regimens for extended space flight. Acta Astronaut 33:221–229

    Article  CAS  PubMed  Google Scholar 

  • Vil-Viliams IF, Shulzhenko EB (1980) Functional state of the cardiovascular system during combined exposure to 28-day immersion, rotation in a short-radius centrifuge, and physical loading on a bicycle ergometer. Kosm Biol Aviakosm Med 14:42–45

    CAS  Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Shipov AA (1997) Biomedical aspects of artificial gravity. J Gravit Physiol 42:27–29

    Google Scholar 

  • Watenpaugh DE, Ballard RE, Schneider SM, Lee SM, Ertl AC, William JM, Boda WL, Hutchinson KJ, Hargens AR (2000) Supine lower body negative pressure exercise during bed rest maintains upright exercise capacity. J Appl Physiol 89:218–227

    CAS  PubMed  Google Scholar 

  • Webb P (1964) Bioastronautics data book. NASA SP 3006, NASA Scientific and Technical Information Division, Washington, DC

  • Welch RB, Bridgeman B Anand S, Browman KE (1993) Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Percept Psychophys 54:195–204

    CAS  PubMed  Google Scholar 

  • White WJ, et al (1965) Biomedical potential of a centrifuge in an orbiting laboratory. SSS-TDR-64–209, Suppl

  • Wood SJ, Ramsdell CD, Mullen TJ, Oman CM, Harm DL, Paloski WH (2000) Transient cardio-respiratory responses to visually induced tilt illusions. Brain Res Bull 53:25–31

    Article  CAS  PubMed  Google Scholar 

  • Yajima K, Miyamoto A, Ito M, Mano T, Nakayama K (1992) Orthostatic intolerance in 6 degrees head-down tilt and lower body negative pressure loading. Acta Astronaut 27:115–121

    Article  CAS  PubMed  Google Scholar 

  • Yajima K, Miyamoto A, Ito M, Maru R, Maeda T, Sanada E, Nakazato T, Saiki C, Yamaguchi Y, Igarashi M, Matsumoto S (1994) Human cardiovascular and vestibular responses in long minutes and low +Gz loading by a short arm centrifuge. Acta Astronaut 33:239–252

    Article  CAS  PubMed  Google Scholar 

  • Yajima K, Iwasaki K, et al (2000) Can daily centrifugation prevent the haematocrit increase elicited by 6-degree, head-down tilt? Pflugers Arch 441:95–97

    Google Scholar 

  • Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res 8:17–25

    CAS  PubMed  Google Scholar 

  • Young LR (1997) Artificial gravity for human missions. J Gravit Physiol 4:21–22

    PubMed  Google Scholar 

  • Young LR (1999) Artificial gravity considerations for a Mars exploration mission. Ann NY Acad Sci 871:367–378

    CAS  PubMed  Google Scholar 

  • Young LR, Hecht H, Lyne LE, Sienko KH, Cheung CC, Kavelaars J (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronaut 49:215–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge definition funding provided by the ESA, which is considering our proposal to study the effects of short-arm centrifugation during bed rest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Clément.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clément, G., Pavy-Le Traon, A. Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur J Appl Physiol 92, 235–248 (2004). https://doi.org/10.1007/s00421-004-1118-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1118-1

Keywords

Navigation