Skip to main content

Abstract

Based on the results from more than 50 interlaboratory comparisons, Horwitz et al. (1980) showed that, as target compound concentrations in complex matrices decrease, the relative standard deviation or coefficient of variation (C.V.) of analytical results increases exponentially. There are a number of potential causes for this problem, but at very lowenvironmental concentrations, method selectivity (i.e., the ability to distinguish the analyte from interferences) is a major factor. Because passive samplers such as the SPMD accumulate a broad range of nonpolar chemicals (including complex mixtures of anthropogenic and biogenic compounds characteristic of the site and sample matrix), sampling must be considered non-selective. Fortunately, passive samplers with nonpolar sequestration phases concentrate potential interferences with low octanol-water partition coefficients (K ows) less than the nonpolar target compounds. However, this enrichment effect is offset when trace (<1 μg L–1) or ultra trace (<1 ng L–1) detection or quantitation limits are required due to the much higher concentrations of potential interferences (relative to analyte concentrations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Bergqvist, P.-A.; Strandberg, B.; Ekelund, R.; Rappe, C.; Granmo, Å. 1998a, Temporal monitoring of organochlorine compounds in seawater by semipermeable membranes following a flooding episode in Western Europe. Environ. Sci. Technol. 32: 3887–3892.

    Article  CAS  Google Scholar 

  • Bergqvist, P.-A.; Strandberg, B.; Rappe, C. 1998b, Lipid removal using semipermeable membranes in PCDD and PCDF analysis of fat-rich environmental samples. Chemosphere 38: 933–943.

    Article  Google Scholar 

  • Booij, K.; Sleiderink, H.M.; Smedes, F. 1998, Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. 17: 1236–1245.

    Article  CAS  Google Scholar 

  • Booij, K.; Hofmans, H.E.; Fischer, C.V.; van Weerlee, E.M. 2003, Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol. 37: 361–366.

    Article  CAS  Google Scholar 

  • DeVita, W.M. and Crunkilton, R.L. 1998, Quality Control Associated with Use of Semipermeable Membrane Devices. In Environmental Toxicology & Risk Assessment, Seventh Volume; Little, E.E., Delonay, A.J., Greenberg, B.M., Eds.; ASTM STP 1333; American Society for Testing and Materials: West Conshocken, PA; pp. 237–245.

    Google Scholar 

  • Ellis, G.S.; Huckins, J.N.; Rostad, C.E.; Schmitt, C.J.; Petty J.D.; MacCarthy, P. 1995, Evaluation of lipid-containing semipermeable membrane devices (SPMDs) for monitoring organochlorine contaminants in the Upper Mississippi River. Environ. Toxicol. Chem. 14: 1875–1884.

    Article  CAS  Google Scholar 

  • Górecki, T. and Pawliszyn, J. 1997, Field-portable solid-phase microextraction/fast GC system for trace analysis. Field Anal. Chem. Tech. 1: 227–284.

    Article  Google Scholar 

  • Gustavson, K.E.; DeVita, W.; Revis, A.; Harkin, J.M. 2000, A novel use of a dual-zone restricted access sorbent: Normal phase separations of methyl oleate and polynuclear aromatic hydrocarbons stemming from semipermeable membrane devices. J. Chromatogr. A 883: 143–149.

    Article  CAS  Google Scholar 

  • Hofmans, H.E. 1998, Numerical Modeling of the Exchange Kinetics of Semipermeable Membrane Devices. MSc Thesis, Netherlands Institute for Sea Research: Den Burg, The Netherlands.

    Google Scholar 

  • Horwitz, W.; Kamps, L.R.; Boyer, K.W. 1980, Quality assurance in the analysis of foods for trace constituents. J. AOAC 63: 1344–1354.

    CAS  Google Scholar 

  • Huckins, J.N.; Tubergen, M.W.; Manuweera, G.K. 1990, Semipermeable membrane devices containing model lipid: A new approach to monitoring the availability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20: 533–552.

    Article  CAS  Google Scholar 

  • Huckins, J.N.; Manuweera, G.K.; Petty, J.D.; Mackay, D.; Lebo, J.A. 1993, Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ. Sci. Technol. 27: 2489–2496.

    Article  CAS  Google Scholar 

  • Huckins, J.N.; Petty, J.D.; Lebo, J.A.; Orazio, C.E.; Prest, H.F.; Tillitt, D.E.; Ellis, G.S.; Johnson, B.T.; Manuweera, G.K. 1996, Semipermeable Membrane Devices (SPMDs) for the Concentration and Assessment of Bioavailable Organic Contaminants in Aquatic Environments. In Techniques in Aquatic Toxicology; Ostrander, G.K., Ed.; CRC Press: Boca Raton, FL; pp. 625–655.

    Google Scholar 

  • Huckins, J.N.; Petty, J.D.; Prest, H.F.; Clark, R.C.; Alvarez, D.A.; Orazio, C.E.; Lebo, J.A.; Cranor, W.L.; Johnson, B.T. 2002, A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants; Publication No. 4690; American Petroleum Institute (API): Washington, DC.

    Google Scholar 

  • Huckins, J.N.; Prest, H.F.; Petty, J.D.; Lebo, J.A.; Hodgins, M.M.; Clark, R.C.; Alvarez, D.A.; Gala, W.R.; Steen, A.; Gale, R.W.; Ingersoll, C.G. 2004, Overview and comparison of lipid-containing semipermeable membrane devices (SPMDs) and oysters (Crassostrea gigas) for assessing chemical exposure. Environ. Toxicol. Chem. 23: 1617–1628.

    Article  CAS  Google Scholar 

  • Johnson, B.T. 2001, USGS Columbia Environmental Research Center, Columbia, MO. Personal communication.

    Google Scholar 

  • Jones-Lepp, T. 2004, U.S. EPA, National Exposure Research Laboratory: Las Vegas, NV; Personal communication.

    Google Scholar 

  • Lebo, J.A.; Gale, R.W.; Petty, J.D.; Tillitt, D.E.; Huckins, J.N.; Meadows, J.C.; Orazio, C.E.; Echols, K.R.; Schroeder, D.J.; Inmon, L.E. 1995, Use of the semipermeable membrane device (SPMD) as an in situ sampler of waterborne bioavailable PCDD and PCDF residues at sub-part-per-quadrillion concentrations. Environ. Sci. Technol. 29: 2886–2892.

    Article  CAS  Google Scholar 

  • Lebo, J.A.; Almeida, F.V.; Cranor, W.L.; Petty, J.D.; Huckins, J.N.; Rastall, A.; Alvarez, D.A.; Mogensen, B.B.; Johnson, B.T. 2004, Purification of triolein for use in semipermeable membrane devices (SPMDs). Chemosphere 54: 1217–1224.

    Article  CAS  Google Scholar 

  • Louch, J.; Allen, G.; Erickson, C.; Wilson, G.; Schmedding, D. 2003, Interpreting results from field deployments of semipermeable membrane devices. Environ. Sci. Technol. 37: 1202–1207.

    Article  CAS  Google Scholar 

  • Maštovská, K. and Lehotay, S.J. 2003, Practical approaches to fast gas chromatography-mass spectrometry. J. Chromatogr. A 1000: 153–180.

    Article  Google Scholar 

  • McCarthy, K.A. and Gale, R.W. 2001, Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable membrane devices. Hydrol. Process 15: 1271–1283.

    Article  Google Scholar 

  • Meadows, J.C.; Tillitt, D.E.; Huckins, J.N.; Schroeder, D. 1993, Large-scale dialysis of sample lipids using a semipermeable membrane device. Chemosphere 26: 1993–2006.

    Article  CAS  Google Scholar 

  • Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E. 1998, Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown trout (Salmo trutta). Environ. Sci. Technol. 32: 1847–1852.

    Article  CAS  Google Scholar 

  • Meyer, M. 2004, USGS Organic Geochemistry Research Laboratory: Lawrence KS; Personal communication.

    Google Scholar 

  • Petty, J.D.; Huckins, J.N.; Orazio, C.E, Lebo, J.A.; Poulton, B.C.; Gale, R.W.; Charbonneau, C.S.; Kaiser, E.M. 1995, Determination of bioavailable organochlorine pesticide residues in the Lower Missouri River. Environ. Sci. Technol. 29: 2561–2566.

    Article  CAS  Google Scholar 

  • Petty, J.D.; Poulton, B.C.; Charbonneau, C.S.; Huckins, J.N.; Jones, S.B.; Cameron, J.T.; Prest, H.F. 1998a, Determination of bioavailable contaminants in the Lower Missouri River following the flood of 1993. Environ. Sci. Technol. 32: 837–842.

    Article  CAS  Google Scholar 

  • Petty, J.D.; Huckins, J.N.; Cranor, W.L.; Clark, R.C. 1998b, Determination of Dieldrin in Ground Water from the George Air Force Base; California. USGS Columbia Environmental Research Center: Columbia, MO; Unpublished report to U.S. EPA, San Francisco; CA.

    Google Scholar 

  • Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.I. 2000a, Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J. Chromatogr. A 879: 83–95.

    Article  CAS  Google Scholar 

  • Petty, J.D.; Gale, R.W.; Huckins, J.N.; Cranor, W.L.; Alvarez, D.A.; Clark, R.C. 2000b, Development and Application of Techniques for Sampling Bioavailable Airborne Contaminants-Tentatively Identified Compounds by Gas Chromatography/Mass Spectrometry. USGS Columbia Environmental Research Center: Columbia, MO; Unpublished report to U.S. EPA National Exposure Assessment Laboratory: Las Vegas; NV.

    Google Scholar 

  • Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W.G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T.L.; Leiker, T.J.; Rostad C.E.; Furlong, E.T. 2004, A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants. Chemosphere 54: 695–705.

    Article  CAS  Google Scholar 

  • Randal, R.C.; Lee, H. II.; Ozretich, R.J.; Lake, J.L.; Pruell, R.J. 1991, Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ. Toxicol. Chem. 10: 1431–1436.

    Article  Google Scholar 

  • Routledge, E.J. and Sumpter, J.P. 1996, Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 15: 214–248.

    Article  Google Scholar 

  • Schneider, R. 1982, Polychlorinated biphenyls (PCBs) in cod tissues from the Western Baltic: Significance of equilibrium partitioning and lipid composition in the bioaccumulation of lipophilic pollutants in gill-breathing animals. Meeresforschung 29: 69–79.

    CAS  Google Scholar 

  • Strandberg, B.; Bergqvist, P.-A.; Rappe, C. 1998, Dialysis with semipermeable membranes as an efficient lipid removal method in the analysis of bioaccumulative chemicals. Anal. Chem. 70: 526–533.

    Article  CAS  Google Scholar 

  • Taylor; J.K. 1987, Quality Assurance of Chemical Measurements; Lewis Publishers: Boca Ratan, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Huckins, J.N., Booij, K., Petty, J.D. (2006). Analytical Chemistry Related to SPMDs. In: Monitors of Organic Chemicals in the Environment. Springer, Boston, MA. https://doi.org/10.1007/0-387-35414-X_5

Download citation

Publish with us

Policies and ethics