Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 748 Accesses

Abstract

Ever since the discovery of the transforming retroviral v-sis oncogene, which encodes PDGF-B, PDGF signaling has been an interesting target for cancer treatment. In the last few years, compelling evidence supports the essential role of PDGF signaling for cancer cell proliferation and tumor angiogenesis in several types of human cancers, including nonmelanoma skin cancers. BCCs, the commonest human cancer, contain activation of the hedgehog pathway, frequently through inactivated mutations of tumor suppressor gene PTCH1. How does activation of the hedgehog pathway promote cell proliferation in the tumor? Our data indicate that PDGFRα activation is important for hedgehog signaling-mediated cell proliferation in BCCs. These findings not only detail the molecular basis of hedgehog-mediated tumorigenesis but also provide new designs for skin cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1998; 1378(1):F79–113.

    PubMed  CAS  Google Scholar 

  2. Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: Development of specific antagonists. Adv Cancer Res 2001; 80:1–38.

    PubMed  CAS  Google Scholar 

  3. Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 2003; 36(1):49–59.

    PubMed  CAS  Google Scholar 

  4. Hoch RV, Soriano P. Roles of PDGF in animal development. Development 2003; 130:4769–4784.

    Article  PubMed  CAS  Google Scholar 

  5. Betsholtz C. Biology of platelet-derived growth factors in development. Birth Defects Res Part C Embryo Today 2003; 69(4):272–285.

    Article  CAS  Google Scholar 

  6. Li X, Ponten A, Aase K et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2000; 2(5):302–309.

    Article  PubMed  CAS  Google Scholar 

  7. LaRochelle WJ, Jeffers M, McDonald WF et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001; 3(5):517–521.

    Article  PubMed  CAS  Google Scholar 

  8. Bergsten E, Uutela M, Li X et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 2001; 3(5):512–516.

    Article  PubMed  CAS  Google Scholar 

  9. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997; 124(14):2691–2700.

    PubMed  CAS  Google Scholar 

  10. Bostrom H, Willetts K, Pekny M et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 1996; 85(6):863–873.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke ID, Dirks PB. A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene 2003; 22(5):722–733.

    Article  PubMed  CAS  Google Scholar 

  12. Uhrbom L, Hesselager G, Nister M et al. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 1998; 58(23):5275–5279.

    PubMed  CAS  Google Scholar 

  13. Dai C, Celestino JC, Okada Y et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15(15):1913–1925.

    Article  PubMed  CAS  Google Scholar 

  14. Kilic T, Alberta JA, Zdunek PR et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000; 60(18):5143–5150.

    PubMed  CAS  Google Scholar 

  15. Lokker NA, Sullivan CM, Hollenbach SJ et al. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 2002; 62(13):3729–3735.

    PubMed  CAS  Google Scholar 

  16. Heinrich MC, Corless CL, Duensing A et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003; 299(5607):708–710.

    Article  PubMed  CAS  Google Scholar 

  17. Sommer G, Agosti V, Ehlers I et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the kit receptor tyrosine kinase. Proc Nad Acad Sci USA 2003; 100(11):6706–6711.

    Article  CAS  Google Scholar 

  18. Heinrich MC, Corless CL, Demetri GD et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21(23):4342–4349.

    Article  PubMed  CAS  Google Scholar 

  19. Golub TR, Barker GF, Lovett M et al. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77(2):307–316.

    Article  PubMed  CAS  Google Scholar 

  20. Carroll M, Tomasson MH, Barker GF et al. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci USA 1996; 93(25):14845–14850.

    Article  PubMed  CAS  Google Scholar 

  21. Baxter EJ, Hochhaus A, Bolufer P et al. The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet 2002; 11(12):1391–1397.

    Article  PubMed  CAS  Google Scholar 

  22. Andrae J, Molander C, Smits A et al. Platelet-derived growth factor-B and-C and active alpha-receptors in medulloblastoma cells. Biochem Biophys Res Commun 2002; 296(3):604–611.

    Article  PubMed  CAS  Google Scholar 

  23. Gilbertson RJ, Clifford SC. PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet 2003; 35(3):197–198.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272(5268):1668–1671.

    Article  PubMed  CAS  Google Scholar 

  25. Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85(6):841–851.

    Article  PubMed  CAS  Google Scholar 

  26. Xie J, Quinn A, Zhang X et al. Physical mapping of the 5 Mb D9S196-D9S180 interval harboring the basal cell nevus syndrome gene and localization of six genes in this region. Genes Chromosomes Cancer 1997; 18(4):305–309.

    Article  PubMed  CAS  Google Scholar 

  27. Quinn AG, Epstein Jr E. Patched, hedgehog, and skin cancer. Methods Mol Biol 2003; 222:85–95.

    PubMed  CAS  Google Scholar 

  28. Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 2001; 10(7):757–762.

    Article  PubMed  CAS  Google Scholar 

  29. Toftgard R. Hedgehog signaling in cancer. Cell Mol Life Sci 2000; 57(12):1720–1731.

    Article  PubMed  CAS  Google Scholar 

  30. Wicking C, Bale AE. Molecular basis of the nevoid basal cell carcinoma syndrome. Curr Opin Pediatr 1997; 9(6):630–635.

    Article  PubMed  CAS  Google Scholar 

  31. Goodrich LV, Milenkovic L, Higgins KM et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277(5329):1109–1113.

    Article  PubMed  CAS  Google Scholar 

  32. Hahn H, Wojnowski L, Zimmer AM et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998; 4(5):619–622.

    Article  PubMed  CAS  Google Scholar 

  33. Aszterbaum M, Epstein J, Oro A et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5(11):1285–1291.

    Article  PubMed  CAS  Google Scholar 

  34. Xie J, Murone M, Luoh SM et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391(6662):90–92.

    Article  PubMed  CAS  Google Scholar 

  35. Lam CW, Xie J, To KF et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 1999; 18(3):833–836.

    Article  PubMed  CAS  Google Scholar 

  36. Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1998; 58(9):1798–1803.

    PubMed  CAS  Google Scholar 

  37. Xie J, Johnson RL, Zhang X et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997; 57(12):2369–2372.

    PubMed  CAS  Google Scholar 

  38. Berman DM, Karhadkar SS, Maitra A et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumors. Nature 2003; 425:846–51.

    Article  PubMed  CAS  Google Scholar 

  39. Thayer S et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425:851–6.

    Article  PubMed  CAS  Google Scholar 

  40. Watkins DN, Berman DM, Burkholder SG et al. Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422(6929):313–317.

    Article  PubMed  CAS  Google Scholar 

  41. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22(1):103–114.

    Article  PubMed  CAS  Google Scholar 

  42. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999; 9(8):445–448.

    Article  PubMed  CAS  Google Scholar 

  43. Oliver TG, Grasfeder LL, Carroll AL et al. Transcriptional profiling of the Sonic hedgehog response: A critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 2003; 100(12):7331–7336.

    Article  PubMed  CAS  Google Scholar 

  44. Allen M, Grachtchouk M, Sheng H et al. Hedgehog signaling regulates sebaceous gland development. Am J Pathol 2003; 163(6):2173–2178.

    PubMed  CAS  Google Scholar 

  45. Niemann C, Unden AB, Lyle S et al. Indian hedgehog and beta-catenin signaling: Role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci USA 2003; 100(Suppl 1):11873–11880.

    Article  PubMed  CAS  Google Scholar 

  46. Mill P, Mo R, Fu H et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 2003; 17(2):282–294.

    Article  PubMed  CAS  Google Scholar 

  47. Milenkovic L, Goodrich LV, Higgins KM et al. Mouse patched1 controls body size determination and limb patterning. Development 1999; 126(20):4431–4440.

    PubMed  CAS  Google Scholar 

  48. Xie J, Aszterbaum M, Zhang X et al. A role of PDGFRalpha in basal cell carcinoma proliferation. Proc Natl Acad Sci USA 2001; 98(16):9255–9259.

    Article  PubMed  CAS  Google Scholar 

  49. Ninck S, Reisser C, Dyckhoff G et al. Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer 2003; 106(1):34–44.

    Article  PubMed  CAS  Google Scholar 

  50. Gleich LL, Srivastava L, Gluckman JL. Plasma platelet-derived growth factor: Preliminary study of a potential marker in head and neck cancer. Ann Otol Rhinol Laryngol 1996; 105(9):710–712.

    PubMed  CAS  Google Scholar 

  51. Zhang JZ, Maruyama K, Ono I et al. Production and secretion of platelet-derived growth factor AB by cultured human keratinocytes: Regulatory effects of phorbol 12-myristate 13-acetate, etretinate, 1,25-dihydroxyvitamin D3, and several cytokines. J Dermatol 1995; 22(5):305–309.

    PubMed  CAS  Google Scholar 

  52. Mueller MM, Fusenig NE. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 2002; 70(9–10):486–497.

    Article  PubMed  Google Scholar 

  53. Simon MP, Pedeutour F, Sirvent N et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997; 15(1):95–98.

    Article  PubMed  CAS  Google Scholar 

  54. Greco A, Fusetti L, Villa R et al. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 1998; 17(10):1313–1319.

    Article  PubMed  CAS  Google Scholar 

  55. Sjoblom T, Shimizu A, O’Brien KP et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001; 61(15):5778–5783.

    PubMed  CAS  Google Scholar 

  56. Rubin BP, Schuetze SM, Eary JF et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 2002; 20(17):3586–3591.

    Article  PubMed  CAS  Google Scholar 

  57. Li CX, Chi S, He N et al. INF alpha induces Fas expression and apoptosis in hedgehog pathway activated BCC cells through inhibiting Ras-Erk signaling. Oncogene 2004; 23(8):1608–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xie, J. (2006). PDGF Pathways and Growth of Basal Cell and Squamous Cell Carcinomas. In: Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-35098-5_10

Download citation

Publish with us

Policies and ethics