Skip to main content

Selenium metabolism in prokaryotes

  • Chapter
Selenium

Summary

The biosynthesis and specific incorporation of selenocysteine into protein requires the function of a UGA codon determining the position of selenocysteine insertion and a secondary/tertiary structure within the mRNA, designated the SECIS element, following the UGA at its 3′side in bacteria and located in the 3′non-translated region in archaea. Biosynthesis of selenocysteine takes place on a unique tRNA species, tRNASec, which is charged by seryl-tRNA synthetase and serves as an adaptor for the conversion of the seryl moiety into the selenocysteyl product by selenocysteine synthase. Monoselenophosphate, provided by selenophosphate synthetase, is the selenium donor. Selenocysteyl-tRNASec is bound by the special translation factor SelB, which in bacteria via its C-terminal extension interacts with the apical part of the SECIS stem-loop structure. Crystallographic and NMR structural analyses of this extension from Moorella thermoacetica SelB, either free or complexed with the SECIS element, showed that it is made up of four winged helix domains from which only the C-terminal one interacts with the RNA ligand. Structure of the entire SelB molecule from Methanococcus maripaludis in the apo- and GDP/GTP bound forms revealed that it is a chimera between elongation factor Tu and initiation factors. Comparison of the structures in the GDP and GTP forms and modelling of the interactions between selenocysteyl-tRNA and SelB provided information on how SelB may discriminate tRNASec from canonical tRNAs and may differentiate between the selenocysteyl moiety and the seryl-residue of the precursor. A scenario for the major steps in the decoding process is postulated and arguments are given why the interaction of SelB with the mRNA is crucial. Reasons are also presented for the necessity of a balanced ratio of the components of the selenocysteine insertion apparatus and how it is regulated in E. coli via translational repression implicating a SECIS-like element located at the ultimate 5′end of selAB mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DB Cowie, GN Cohen 1957 Biochim Biophy Acta 26:252

    Article  CAS  Google Scholar 

  2. T Tuve, HH Williams 1961 J Biol Chem 236:597

    PubMed  CAS  Google Scholar 

  3. J Heider, A Böck 1993 Advances Microbial Physiol 135:71

    Google Scholar 

  4. JL Hoffmann, KP McConell, DR Carpenter 1970 Biochim Biophys Acta 199:531

    Google Scholar 

  5. PA Young, II Kaiser 1975 Arch Biochem Biophys 171:483

    Article  PubMed  CAS  Google Scholar 

  6. S Müfiller, J Heider, A. Böck 1997 Arch Microbiol 168:421

    Article  Google Scholar 

  7. WA Hendrickson, JR Horton, DM LeMaster 1990 EMBO J 9:1665

    PubMed  CAS  Google Scholar 

  8. GP Mullen, RP Dunlap, JD Odon 1986 Biochemistry 25:5625

    Article  PubMed  CAS  Google Scholar 

  9. RE Huber, RS Criddle 1967 Biochim Biophys Acta 141:587

    PubMed  CAS  Google Scholar 

  10. MGN Hartmannis, TC Stadtman 1982 Proc Natl Acad Sci USA 79:4912

    Article  Google Scholar 

  11. S Müller, H Senn, B Gsell, W Vetter, C Baron, A Böck 1994 Biochemistry 33:3404

    Article  PubMed  Google Scholar 

  12. M-P Strub et al 2003 Structure 11:1359

    Article  PubMed  CAS  Google Scholar 

  13. F Zinoni, A Birkmann, W Leinfelder, A Böck 1987 Proc Natl Acad Sci USA 84:3156

    Article  PubMed  CAS  Google Scholar 

  14. GV Kryukov, VN Gladyshev 2004 EMBO Reports 5:538

    Article  PubMed  CAS  Google Scholar 

  15. A Graham et al 1980 FEMS Microbiol Lett 7:145

    Article  CAS  Google Scholar 

  16. BA Haddock, M-A Mandrand-Berthelot 1982 Biochem Soc Trans 10:478

    PubMed  CAS  Google Scholar 

  17. M-A Mandrand-Berthelot, MYK Wee, BA Haddock 1978 FEMS Microbiol Lett 4:37

    Article  CAS  Google Scholar 

  18. YA Begg, JN Whyte, BA Haddock 1977 FEMS Microbiol Lett 2:47

    Article  CAS  Google Scholar 

  19. M Chippaux, F Casse, C-C Pascal 1972 J Bacteriol 110:766

    PubMed  CAS  Google Scholar 

  20. EL Barrett, CE Jackson, HT Fukumoto, GW Chang 1979 Mol Gen Genet 177:95

    Article  PubMed  CAS  Google Scholar 

  21. W Leinfelder et al 1988 J Bacteriol 170:540

    PubMed  CAS  Google Scholar 

  22. JC Cox, ES Edwards, JA DeMoss 1981 J Bacteriol 145:1317

    PubMed  CAS  Google Scholar 

  23. I Chambers et al 1986 EMBO J 5:1221

    PubMed  CAS  Google Scholar 

  24. F Zinoni, A Birkrnann, TC Stadtman, A Böck 1986 Proc Natl Acad Sci USA 83:4650

    Article  PubMed  CAS  Google Scholar 

  25. R Wilting, S Schorling, BC Persson, A Böck 1997 J Mol Biol 1266:637

    Article  Google Scholar 

  26. A Böck 2005 Selenocysteine in Encyclopedia of Life Sciences John Wiley & Sons Chichester http://www.els.net

    Google Scholar 

  27. W Leinfelder, E Zehelein, M-A Mandrand-Berthelot, A Böck 1988 Nature 331:723

    Article  PubMed  CAS  Google Scholar 

  28. C Baron, W Westhof, A Böck, R Giegé 1993 J Mol Biol 1231:274

    Article  Google Scholar 

  29. P Tormay, R Wilting, J Heider, A Brick 1994 J Bacteriol 176:1268

    PubMed  CAS  Google Scholar 

  30. C Baron, J Heider, AB Sck 1990 Nucl Acids Res 18:6761

    Article  PubMed  CAS  Google Scholar 

  31. K Forchhammer et al 1991 J Biol Chem 266:6318

    PubMed  CAS  Google Scholar 

  32. K Forchhammer, A Bröck 1991 J Biol Chem 266:6324

    PubMed  CAS  Google Scholar 

  33. Z Veresetal 1992 Proc Natl. Acad Sci USA 89:2975

    Article  Google Scholar 

  34. P Tormay et al 1998 Eurd Biochem 254:655

    Article  CAS  Google Scholar 

  35. RS Glass, TC Stadtman 1995 Methods Enzymol 252:309

    Article  PubMed  CAS  Google Scholar 

  36. H Engelhardt et al 1992 Mol Microbiol 6:3461

    Article  PubMed  CAS  Google Scholar 

  37. H Dong, L Nilsson, CG Kurland 1996 J Mol Biol 260:649

    Article  PubMed  CAS  Google Scholar 

  38. M Rother, A Resch, R. Wilting & A Brick 2001 Bio Factors 14:75

    CAS  Google Scholar 

  39. C Frirster, G Ott, K Forchhammer, M Sprinzl 1990 Nucl Acids Res 18:487

    Article  Google Scholar 

  40. K Forchhammer, W Leinfelder, A Brick 1989 Nature 342:453

    Article  PubMed  CAS  Google Scholar 

  41. M Rother, R Wilting, S Commans, A Brick 2000 J Mol Biol 299:351

    Article  PubMed  CAS  Google Scholar 

  42. RM Tujebajeva et al 2000 EMBO Reports 11:158

    Article  Google Scholar 

  43. D Fagegaltier et al 2000 EMBO J 17:4796

    Article  Google Scholar 

  44. M Leibundgut, C Frick, M Thanbichler, A Brick, N Ban 2005 EMBO J 24:11

    Article  PubMed  CAS  Google Scholar 

  45. A Roil-Mecak, C Cao, TE Dever, SK Budey 2000 Cell 103:781

    Article  Google Scholar 

  46. E Schmitt, S Blanquet, Y Mechulam 2002 EMBO J 21:1821

    Article  PubMed  CAS  Google Scholar 

  47. CB Foster 2005 Mol Biol Evol 122:383

    Google Scholar 

  48. C Baron, J Heider, A Brick 1993 Proc Natl Acad Sci USA 90:4181

    Article  PubMed  CAS  Google Scholar 

  49. MJ Berry et al 1991 Nature 353:273

    Article  PubMed  CAS  Google Scholar 

  50. MJ Berry, L Banu, JW Harney, PR Larsen 1993 EMBO J 12:3315

    PubMed  CAS  Google Scholar 

  51. GE Garcia, TC Stadtman 1992 J Bacteriol 174:7080

    PubMed  CAS  Google Scholar 

  52. T. Gursinsky, J Jäger, JR Andreesen, B Srihling 2000 Arch Microbiol 174:200

    Article  PubMed  CAS  Google Scholar 

  53. M Rother, I Matthes, F Lottspeich & A Brick 2003 J Bacteriol 185:107

    Article  PubMed  CAS  Google Scholar 

  54. M Kromayer, R Wilting, P Tormay, A Brick 1996 J Mol Biol 262:413

    Article  PubMed  CAS  Google Scholar 

  55. D Fourmy, E Guittet, S Yoshizawa 2002 J Mol Biol 324:137

    Article  PubMed  CAS  Google Scholar 

  56. S Yoshizawa et al 2005 Nat Struct Mol Biol 12:198

    Article  PubMed  CAS  Google Scholar 

  57. M Selmer, XD Su 2002 EMBO J 21:4145

    Article  PubMed  CAS  Google Scholar 

  58. KS Gajiwala, SK Burley 2000 Curr Opin Struct Biol, 10:110

    Article  PubMed  CAS  Google Scholar 

  59. A Hüttenhofer, A Brick 1998 Biochemistry 37:885

    Article  PubMed  Google Scholar 

  60. M Thanbichler, A Brick, RS Goody 2000 J Biol Chem 275:20458

    Article  PubMed  CAS  Google Scholar 

  61. J Heider, C Baron, A Brick 1992 EMBO J 11:3759

    PubMed  CAS  Google Scholar 

  62. Z Liu, M Reches, I Groisman, H Engelberg-Kulka 1998 Nucl Acids Res 26:896

    Article  PubMed  CAS  Google Scholar 

  63. A Hiittenhofer, E Westhof, A Bröck 1996 RNA 2:354

    Google Scholar 

  64. C Allmang, P Carbon, A Krol 2002 RNA 8:1308

    Article  PubMed  CAS  Google Scholar 

  65. AM Zavacki et al 2003 Mol Cell 11:773

    Article  PubMed  CAS  Google Scholar 

  66. S Meunier et al 2000 EMBO J 19:1918

    Article  PubMed  CAS  Google Scholar 

  67. M Valle et al 2003 Nat Struct Biol 10:899

    Article  PubMed  CAS  Google Scholar 

  68. MJ Berry, AL Maia, JD Kieffer, JW Harney, PR Larsen 1992 Endocrinology 131:1848

    Article  PubMed  CAS  Google Scholar 

  69. H Kollmus, L Flohé, JEG McCarthy 1996 Nucl Acids Res 24:1195

    Article  PubMed  CAS  Google Scholar 

  70. S Suppmann, BC Persson, A Bröck 1999 EMBO J 18:2284

    Article  PubMed  CAS  Google Scholar 

  71. ESJ Arnér, H Sarioglu, F Lottspeich, A Holmgren, A Bröck 1999 J Mol Biol 292:1003

    Article  PubMed  Google Scholar 

  72. O Rengby et al 2004 Appl Environ Microbiol 51:59

    Google Scholar 

  73. Z Liu, M Reches, H Engelberg-Kulka 1999 J Mol Biol 294:1073

    Article  PubMed  CAS  Google Scholar 

  74. JB Mansell, D Gueremont, ES Poole, WP Tate 2001 EMBO J 20:7234

    Article  Google Scholar 

  75. ES Poole, CM Brown, WP Tate 1995 EMBO J 14:151

    PubMed  CAS  Google Scholar 

  76. S Mottagui-Tabar, A Bjrörnsson, L Isaksson EMBO J 13:249

    Google Scholar 

  77. J Parker 1989 Microbiol Rev 53:273

    PubMed  CAS  Google Scholar 

  78. SJ Klugetal 1997 Proc Natl Acad Sci USA 94:6676

    Article  Google Scholar 

  79. G Sawers, J Heider, E Zehelein, A Bröck 1991 J Bacteriol 172:4983

    Google Scholar 

  80. M Thanbichler, A Bröck 2002 EMBO J 21:6825

    Article  Google Scholar 

  81. P Tormay, G Sawers, A Bröck 1996 Mol Microbio 121:125–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Böck, A., Rother, M., Leibundgut, M., Ban, N. (2006). Selenium metabolism in prokaryotes. In: Hatfield, D.L., Berry, M.J., Gladyshev, V.N. (eds) Selenium. Springer, Boston, MA. https://doi.org/10.1007/0-387-33827-6_2

Download citation

Publish with us

Policies and ethics