Skip to main content

Sonic Hedgehog Signaling in Craniofacial Development

  • Chapter
Hedgehog-Gli Signaling in Human Disease

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Homer. (850 B.C.). The Odyssey.

    Google Scholar 

  2. Belloni E, Muenke M, Roessler E et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 1996; 14:353–6.

    Article  PubMed  CAS  Google Scholar 

  3. Schimmenti LA, de la Cruz J, Lewis RA et al. Novel mutation in sonic hedgehog in nonsyndromic colobomatous microphthalmia. Am J Med Genet 2003; 116A:215–21.

    Article  Google Scholar 

  4. Jeff Dee. Unigames, 1999. http://www.io.com/unigames/jeffdee.html.

    Google Scholar 

  5. Cohen Jr MM. Problems in the definition of holoprosencephaly. Am J Med Genet 2001; 103:183–7.

    Article  PubMed  Google Scholar 

  6. Demyer W, Zeman W, Palmer CG. The face predicts the brain: Diagnostic significance of median facial anomalies for holoprosencephaly (Arhinencephaly). Pediatrics 1964; 34:256–63.

    PubMed  CAS  Google Scholar 

  7. OMIM. Online Mendelian Inheritance in Man, OMIM. Baltimore, Bethesda, MD: McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University and National Center for Biotechnology Information, National Library of Medicine, 2000. http://www.ncbi.nlm.nih.gov/omim/.

    Google Scholar 

  8. Nanni L, Ming JE, Bocian M et al. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 1999; 8:2479–88.

    Article  PubMed  CAS  Google Scholar 

  9. Roessler E, Belloni E, Gaudenz K et al. Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum Mol Genet 1997; 6:1847–53.

    Article  PubMed  CAS  Google Scholar 

  10. Nanni L, Ming JE, Du Y et al. SHH mutation is associated with solitary median maxillary central incisor: A study of 13 patients and review of the literature. Am J Med Genet 2001; 102:1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Wallis D, Muenke M. Mutations in holoprosencephaly. Hum Mutat 2000; 16:99–108.

    Article  PubMed  CAS  Google Scholar 

  12. Ming JE, Kaupas ME, Roessler E et al. Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 2002; 110:297–301.

    Article  PubMed  CAS  Google Scholar 

  13. Marini M, Cusano R, De Biasio P et al. Previously undescribed nonsense mutation in SHH caused autosomal dominant holoprosencephaly with wide intrafamilial variability. Am J Med Genet 2003; 117A:112–5.

    Article  Google Scholar 

  14. Traiffort E, Dubourg C, Faure H et al. Functional characterization of sonic hedgehog mutations associated with holoprosencephaly. J Biol Chem 2004; 279:42889–97.

    Article  PubMed  CAS  Google Scholar 

  15. Briscoe J, Chen Y, Jessell TM et al. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell 2001; 7:1279–91.

    Article  PubMed  CAS  Google Scholar 

  16. Roessler E, Du YZ, Mullor JL et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA 2003; 100:13424–9.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson RL, Milenkovic L, Scott MP. In vivo functions of the patched protein: Requirement of the C terminus for target gene inactivation but not Hedgehog sequestration. Mol Cell 2000; 6:467–78.

    Article  PubMed  CAS  Google Scholar 

  18. Boutet N, Bignon YJ, Drouin-Garraud V et al. Spectrum of PTCH1 mutations in French patients with Gorlin syndrome. J Invest Dermatol 2003; 121:478–81.

    Article  PubMed  CAS  Google Scholar 

  19. Lam CW, Leung CY, Lee KC et al. Novel mutations in the PATCHED gene in basal cell nevus syndrome. Mol Genet Metab 2002; 76:57–61.

    Article  PubMed  CAS  Google Scholar 

  20. Gorlin RJ. Gorlin (nevoid basal cell carcinoma) syndrome. In: Gorlin RJ, Cohen MM, Hennekam RCM, eds. Syndromes of the Head and Neck. Oxford: Oxford University Press, 2001.

    Google Scholar 

  21. Lacombe D, Chateil JF, Fontan D et al. Medulloblastoma in the nevoid basal-cell carcinoma syndrome: Case reports and review of the literature. Genet Couns 1990; 1:273–7.

    PubMed  CAS  Google Scholar 

  22. Kalff-Suske M, Wild A, Topp J et al. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. Hum Mol Genet 1999; 8:1769–77.

    Article  PubMed  CAS  Google Scholar 

  23. Kang S, Graham Jr JM, Olney AH et al. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 1997a; 15:266–8.

    Article  PubMed  CAS  Google Scholar 

  24. Shin SH, Kogerman P, Lindstrom E et al. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci USA 1999; 96:2880–4.

    Article  PubMed  CAS  Google Scholar 

  25. Duncan PA, Klein RM, Wilmot PL et al. Greig cephalopolysyndactyly syndrome. Am J Dis Child 1979; 133:818–21.

    PubMed  CAS  Google Scholar 

  26. Greig D. Oxycephaly. Edinburgh Medical Journal 1926; 33:189–218.

    Google Scholar 

  27. Kang S, Rosenberg M, Ko VD et al. Gene structure and allelic expression assay of the human GLI3 gene. Hum Genet 1997b; 101:154–7.

    Article  PubMed  CAS  Google Scholar 

  28. Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 1991; 352:539–40.

    Article  PubMed  CAS  Google Scholar 

  29. Wild A, Kalff-Suske M, Vortkamp A et al. Point mutations in human GLI3 cause Greig syndrome. Hum Mol Genet 1997; 6:1979–84.

    Article  PubMed  CAS  Google Scholar 

  30. Kelley RL, Roessler E, Hennekam RC et al. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 1996; 66:478–84.

    Article  PubMed  CAS  Google Scholar 

  31. Muenke M, Beachy PA. Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 2000; 10(3):262–9.

    Article  PubMed  CAS  Google Scholar 

  32. Worthington S, Goldblatt J. Smith-Lemli-Opitz syndrome: further delineation of the phenotype. Clin Dysmorphol 1997; 6(3):263–6.

    Article  PubMed  CAS  Google Scholar 

  33. Honda A, Tint GS, Salen G et al. Defective conversion of 7-dehydrocholesterol to cholesterol in cultured skin fibroblasts from Smith-Lemli-Opitz syndrome homozygotes. J Lipid Res 1995; 36:1595–601.

    PubMed  CAS  Google Scholar 

  34. Shefer S, Salen G, Batta AK et al. Markedly inhibited 7-dehydrocholesterol-delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes. J Clin Invest 1995; 96:1779–85.

    PubMed  CAS  Google Scholar 

  35. Zeng X, Goetz JA, Suber LM et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 2001; 411:716–20.

    Article  PubMed  CAS  Google Scholar 

  36. Roux C, Wolf C, Mulliez N et al. Role of cholesterol in embryonic development. Am J Clin Nutr 2000; 71:1270S–9S.

    PubMed  CAS  Google Scholar 

  37. Edison RJ, Muenke M. Central nervous system and limb anomalies in case reports of first-trimester statin exposure. N Engl J Med 2004; 350:1579–82.

    Article  PubMed  CAS  Google Scholar 

  38. CDC. Fetal Alcohol Information. Centers for Disease Control 2004, (http://www.cdc.gov/ncbddd/fas/fasask.htm).

    Google Scholar 

  39. Jones KL, Smith DW, Ulleland CN et al. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1973; 1:1267–71.

    Article  PubMed  CAS  Google Scholar 

  40. Sampson PD, Streissguth AP, Bookstein FL et al. Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology 1997; 56:317–26.

    Article  PubMed  CAS  Google Scholar 

  41. Young DL, Schneider RA, Hu D et al. Genetic and teratogenic approaches to craniofacial development. Crit Rev Oral Biol Med 2000; 11(3):304–17.

    Article  PubMed  CAS  Google Scholar 

  42. Ahlgren SC, Thakur V, Bronner-Fraser M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci USA 2002; 99:10476–81.

    Article  PubMed  CAS  Google Scholar 

  43. Zachman RD, Grummer MA. The interaction of ethanol and vitamin A as a potential mechanism for the pathogenesis of Fetal Alcohol syndrome. Alcohol Clin Exp Res 1998; 22:1544–56.

    PubMed  CAS  Google Scholar 

  44. Stern RS, Rosa F, Baum C. Isotretinoin and pregnancy. J Am Acad Dermatol 1984; 10:851–4.

    Article  PubMed  CAS  Google Scholar 

  45. Monga M. Vitamin A and its congeners. Semin Perinatol 1997; 21:135–42.

    Article  PubMed  CAS  Google Scholar 

  46. Nau H. Teratogenicity of isotretinoin revisited: Species variation and the role of all-trans-retinoic acid. J Am Acad Dermatol 2001; 45:S183–7.

    Article  PubMed  CAS  Google Scholar 

  47. Helms JA, Kim CH, Hu D et al. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 1997; 187:25–35.

    Article  PubMed  CAS  Google Scholar 

  48. Hayhurst M, McConnell SK. Mouse models of holoprosencephaly. Curr Opin Neurol 2003; 16:135–41.

    Article  PubMed  CAS  Google Scholar 

  49. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–13.

    Article  PubMed  CAS  Google Scholar 

  50. Goodrich LV, Milenkovic L, Higgins KM et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277:1109–13.

    Article  PubMed  CAS  Google Scholar 

  51. Jeong J, Mao J, Tenzen T et al. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 2004; 18:937–51.

    Article  PubMed  CAS  Google Scholar 

  52. Milenkovic L, Goodrich LV, Higgins KM et al. Mouse patched1 controls body size determination and limb patterning. Development 1999; 126:4431–40.

    PubMed  CAS  Google Scholar 

  53. Cordero D, Milenkovic L, Tapadia M et al. Striking a balance between Sonic Hedgehog and Patched during craniofacial development. Abstract Annual Meeting of the American College of Medical Genetics. Dallas, Texas, 2005.

    Google Scholar 

  54. Goodrich LV, Jung D, Higgins KM et al. Overexpression of ptc1 inhibits induction of Shh target genes and prevents normal patterning in the neural tube. Dev Biol 1999; 211:323–34.

    Article  PubMed  CAS  Google Scholar 

  55. Hui CC, Joyner AL. A mouse model of greig cephalopolysyndactyly syndrome: The extra-toes J mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 1993; 3:241–6.

    Article  PubMed  CAS  Google Scholar 

  56. Aoto K, Nishimura T, Eto K et al. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 2002; 251:320–32.

    Article  PubMed  CAS  Google Scholar 

  57. Ding Q, Motoyama J, Gasca S et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 1998; 125:2533–43.

    PubMed  CAS  Google Scholar 

  58. Lewis KE, Drossopoulou G, Paton IR et al. Expression of ptc and gli genes in talpid3 suggests bifurcation in Shh pathway. Development 1999; 126:2397–407.

    PubMed  CAS  Google Scholar 

  59. Buxton P, Francis-West PH, Davey MG et al. Craniofacial development in the talpid3 chicken mutant. Differentiation 2004; 72:348–62.

    Article  PubMed  CAS  Google Scholar 

  60. Molotkov A, Duester G. Retinol/ethanol drug interaction during acute alcohol intoxication in mice involves inhibition of retinol metabolism to retinoic acid by alcohol dehydrogenase. J Biol Chem 2002; 277:22553–7.

    Article  PubMed  CAS  Google Scholar 

  61. Schneider RA, Hu D, Rubenstein JL et al. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001; 128:2755–67.

    PubMed  CAS  Google Scholar 

  62. Hoffman L, Miles J, Avaron F et al. Exogenous retinoic acid induces a stage-specific, transient and progressive extension of Sonic hedgehog expression across the pectoral fin bud of zebrafish. Int J Dev Biol 2002; 46:949–56.

    PubMed  CAS  Google Scholar 

  63. Keeler RF. Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine. Teratology 1970; 3:175–80.

    Article  PubMed  CAS  Google Scholar 

  64. Keeler RF. Livestock models of human birth defects, reviewed in relation to poisonous plants. J Anim Sci 1988; 66:2414–27.

    PubMed  CAS  Google Scholar 

  65. Incardona JP, Gaffield W, Kapur RP et al. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 1998; 125:3553–62.

    PubMed  CAS  Google Scholar 

  66. James LF. Teratological research at the USDA-ARS poisonous plant research laboratory. J Nat Toxins 1999; 8:63–80.

    PubMed  CAS  Google Scholar 

  67. Binns W, Thacker EJ, James LF et al. A congenital cyclopiantype malformation in lambs. J Am Vet Med Assoc 1959; 134:180–3.

    PubMed  CAS  Google Scholar 

  68. Binns W, James LF, Shupe JL et al. A congenital cyclopian-type malformation in lambs induced by maternal ingestion of a range plant, veratrum californicum. Am J Vet Res 1963; 24:1164–75.

    PubMed  CAS  Google Scholar 

  69. Keeler RF, Binns W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1968; 1:5–10.

    Article  PubMed  CAS  Google Scholar 

  70. Keller RF. Teratogenic compounds of Veratrum californicum (Durand). VII. The structure of the glycosidic alkaloid cycloposine. Steroids 1969; 13:579–88.

    Article  Google Scholar 

  71. Keeler RF. Cyclopamine and related steroidal alkaloid teratogens: Their occurrence, structural relationship, and biologic effects. Lipids 1978; 13:708–15.

    Article  PubMed  CAS  Google Scholar 

  72. Gaffield W, Keeler RF. Induction of terata in hamsters by solanidane alkaloids derived from Solanum tuberosum. Chem Res Toxicol 1996; 9:426–33.

    Article  PubMed  CAS  Google Scholar 

  73. Coventry S, Kapur RP, Siebert JR. Cyclopamine-induced holoprosencephaly and associated craniofacial malformations in the golden hamster: Anatomic and molecular events. Pediatr Dev Pathol 1998; 1:29–41.

    Article  PubMed  CAS  Google Scholar 

  74. Cordero D, Marcucio R, Hu D et al. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest 2004; 114:485–94.

    Article  PubMed  CAS  Google Scholar 

  75. Chen JK, Taipale J, Cooper MK et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16:2743–8.

    Article  PubMed  CAS  Google Scholar 

  76. Cooper MK, Porter JA, Young KE et al. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280:1603–7.

    Article  PubMed  CAS  Google Scholar 

  77. Lewis PM, Dunn MP, McMahon JA et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 2001; 105:599–612.

    Article  PubMed  CAS  Google Scholar 

  78. Kolf-Clauw M, Chevy F, Wolf C et al. Inhibition of 7-dehydrocholesterol reductase by the teratogen AY9944: A rat model for Smith-Lemli-Opitz syndrome. Teratology 1996; 54:115–25.

    Article  PubMed  CAS  Google Scholar 

  79. Kolf-Clauw M, Chevy F, Siliart B et al. Cholesterol biosynthesis inhibited by BM15.766 induces holoprosencephaly in the rat. Teratology 1997; 56:188–200.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen Jr MM. The hedgehog signaling network. Am J Med Genet 2003; 123A:5–28.

    Article  Google Scholar 

  81. Willnow TE, Hilpert J, Armstrong SA et al. Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 1996; 93:8460–4.

    Article  PubMed  CAS  Google Scholar 

  82. Barth JL, Argraves WS. Cubilin and megalin: Partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med 2001; 11:26–31.

    Article  PubMed  CAS  Google Scholar 

  83. Drake CJ, Fleming PA, Larue AC et al. Differential distribution of cubilin and megalin expression in the mouse embryo. Anat Rec 2004; 277A:163–70.

    Article  CAS  Google Scholar 

  84. McCarthy RA, Barth JL, Chintalapudi MR et al. Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem 2002; 277:25660–7.

    Article  PubMed  CAS  Google Scholar 

  85. Christensen EI, Moskaug JO, Vorum H et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol 1999; 10:685–95.

    PubMed  CAS  Google Scholar 

  86. McCarthy RA, Argraves WS. Megalin and the neurodevelopmental biology of sonic hedgehog and retinol. J Cell Sci 2003; 116:955–60.

    Article  PubMed  CAS  Google Scholar 

  87. Birn H, Vorum H, Verroust PJ et al. Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol 2000; 11:191–202.

    PubMed  CAS  Google Scholar 

  88. Ericson J, Morton S, Kawakami A et al. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 1996; 87:661–73.

    Article  PubMed  CAS  Google Scholar 

  89. Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res 2001; 80:1974–9.

    PubMed  CAS  Google Scholar 

  90. Hall JM, Bell ML, Finger TE. Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev Biol 2003; 255:263–77.

    Article  PubMed  CAS  Google Scholar 

  91. Dillon CP, Sandy P, Nencioni A et al. RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2004.

    Google Scholar 

  92. Mello CC, Conte Jr D. Revealing the world of RNA interference. Nature 2004; 431:338–42.

    Article  PubMed  CAS  Google Scholar 

  93. Mocellin S, Provenzano M. RNA interference: Learning gene knock-down from cell physiology. J Transl Med 2004; 2:39.

    Article  PubMed  CAS  Google Scholar 

  94. Wadhwa R, Kaul SC, Miyagishi M et al. Vectors for RNA interference. Curr Opin Mol Ther 2004; 6:367–72.

    PubMed  CAS  Google Scholar 

  95. Helms JA, Schneider RA. Cranial skeletal biology. Nature 2003; 423:326–31.

    Article  PubMed  CAS  Google Scholar 

  96. Le Douarin NM, Creuzet S, Couly G et al. Neural crest cell plasticity and its limits. Development 2004; 131:4637–50.

    Article  PubMed  CAS  Google Scholar 

  97. Spemann HaM, H. †ber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Roux’ Arch f Entw mech 1924; 100:599–638.

    Google Scholar 

  98. Tabata T, Takei Y. Morphogens, their identification and regulation. Development 2004; 131:703–12.

    Article  PubMed  CAS  Google Scholar 

  99. Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996; 87:553–63.

    Article  PubMed  CAS  Google Scholar 

  100. Lee CS, Buttitta L, Fan CM. Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci USA 2001; 98:11347–52.

    Article  PubMed  CAS  Google Scholar 

  101. Ruiz i Altaba A, Nguyen V, Palma V. The emergent design of the neural tube: Prepattern, SHH morphogen and GLI code. Curr Opin Genet Dev 2003; 13:513–21.

    Article  PubMed  CAS  Google Scholar 

  102. Goodrich LV, Scott MP. Hedgehog and patched in neural development and disease. Neuron 1998; 21:1243–57.

    Article  PubMed  CAS  Google Scholar 

  103. Briscoe J, Pierani A, Jessell TM et al. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 2000; 101:435–45.

    Article  PubMed  CAS  Google Scholar 

  104. Timmer JR, Wang C, Niswander L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 2002; 129:2459–72.

    PubMed  CAS  Google Scholar 

  105. Crossley PH, Martinez S, Ohkubo Y et al. Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 2001; 108:183–206.

    Article  PubMed  CAS  Google Scholar 

  106. Muenke M, Cohen Jr MM. Genetic approaches to understanding brain development: Holoprosencephaly as a model. Ment Retard Dev Disabil Res Rev 2000; 6:15–21.

    Article  PubMed  CAS  Google Scholar 

  107. Marcucio R, Cordero D, Hu D et al. Molecular interactions coordinating development of the forebrain and face. Dev Biol 2005; in press.

    Google Scholar 

  108. Knoetgen H, Teichmann U, Kessel M. Head-organizing activities of endodermal tissues in vertebrates. Cell Mol Biol (Noisy-le-grand) 1999; 45:481–92.

    PubMed  CAS  Google Scholar 

  109. Hu D, Marcucio RS, Helms JA. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 2003; 130:1749–58.

    Article  PubMed  CAS  Google Scholar 

  110. Mina M, Kollar EJ. The induction of odontogenesis in nondental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32:123–7.

    Article  PubMed  CAS  Google Scholar 

  111. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103(Suppl):155–69.

    PubMed  Google Scholar 

  112. Francis-West P, Ladher R, Barlow A et al. Signalling interactions during facial development. Mech Dev 1998; 75:3–28.

    Article  PubMed  CAS  Google Scholar 

  113. Rice R, Spencer-Dene B, Connor EC et al. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest 2004; 113:1692–700.

    Article  PubMed  CAS  Google Scholar 

  114. Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development 2004; 131:2875–85.

    Article  PubMed  CAS  Google Scholar 

  115. Hall JM, Hooper JE, Finger TE. Expression of sonic hedgehog, patched, and Gli1 in developing taste papillae of the mouse. J Comp Neurol 1999; 406:143–55.

    Article  PubMed  CAS  Google Scholar 

  116. Jaskoll T, Melnick M. Submandibular gland morphogenesis: Stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-r null mutations. Anat Rec 1999; 256:252–68.

    Article  PubMed  CAS  Google Scholar 

  117. Kashimata M, Sayeed S, Ka A et al. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev Biol 2000; 220:183–96.

    Article  PubMed  CAS  Google Scholar 

  118. Jaskoll T, Leo T, Witcher D et al. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 2004; 229:722–32.

    Article  PubMed  CAS  Google Scholar 

  119. Cordero D, Schneider RA, Helms JA. Morphogenesis of the Face. In: Lin O, Jane, eds. In Craniofacial Surgery: Science and Surgical Technique. Philadelphia: WB Saunders Company 2001:75–83.

    Google Scholar 

  120. Lacbawan FL, Muenke M. Central nervous system embryogenesis and its failures. Pediatr Dev Pathol 2002; 5:425–47.

    Article  PubMed  CAS  Google Scholar 

  121. Monuki ES, Walsh CA. Mechanisms of cerebral cortical patterning in mice and humans. Nat Neurosci 2001; 4(Suppl):1199–206.

    Article  PubMed  CAS  Google Scholar 

  122. Roessler E, Muenke M. Midline and laterality defects: Left and right meet in the middle. Bioessays 2001; 23:888–900.

    Article  PubMed  CAS  Google Scholar 

  123. Kessaris N, Jamen F, Rubin LL et al. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 2004; 131:1289–98.

    Article  PubMed  CAS  Google Scholar 

  124. Marklund M, Sjodal M, Beehler BC et al. Retinoic acid signalling specifies intermediate character in the developing telencephalon. Development 2004; 131:4323–32.

    Article  PubMed  CAS  Google Scholar 

  125. Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 2004; 131:337–45.

    Article  PubMed  CAS  Google Scholar 

  126. Le Douarin NM, Dupin E. Multipotentiality of the neural crest. Curr Opin Genet Dev 2003; 13:529–36.

    Article  PubMed  CAS  Google Scholar 

  127. Noden DM. Origins and patterning of craniofacial mesenchymal tissues. J Craniofac Genet Dev Biol Suppl 1986; 2:15–31.

    PubMed  CAS  Google Scholar 

  128. Trainor PA, Melton KR, Manzanares M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 2003; 47:541–53.

    PubMed  Google Scholar 

  129. Kulesa P, Ellies DL, Trainor PA. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 2004; 229:14–29.

    Article  PubMed  CAS  Google Scholar 

  130. Trumpp A, Depew MJ, Rubenstein JL et al. Cremediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 1999; 13:3136–48.

    Article  PubMed  CAS  Google Scholar 

  131. Schneider RA, Helms JA. The cellular and molecular origins of beak morphology. Science 2003; 299:565–8.

    Article  PubMed  CAS  Google Scholar 

  132. Tucker AS, Lumsden A. Neural crest cells provide species-specific patterning information in the developing branchial skeleton. Evol Dev 2004; 6:32–40.

    Article  PubMed  Google Scholar 

  133. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999; 126:4873–84.

    PubMed  CAS  Google Scholar 

  134. Abzhanov A, Helms JA et al. Cross-regulatory interactions between Fgf8 and Shh in chick frontonasal primordium. In revision.

    Google Scholar 

  135. Mo R, Freer AM, Zinyk DL et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997; 124:113–23.

    PubMed  CAS  Google Scholar 

  136. Ericson J, Muhr J, Placzek M et al. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 1995; 81(5):747–56.

    Article  PubMed  CAS  Google Scholar 

  137. Ferguson MW. Palate development. Development 1988; 103(Suppl):41–60.

    PubMed  Google Scholar 

  138. De Moerlooze L, Spencer-Dene B, Revest J et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000; 127:483–92.

    PubMed  Google Scholar 

  139. Igarashi M, Finch PW, Aaronson SA. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J Biol Chem 1998; 273:13230–5.

    Article  PubMed  CAS  Google Scholar 

  140. Vieira AR, Karras JC, Orioli IM et al. Genetic origins in a South American clefting population. Clin Genet 2002; 62:458–63.

    Article  PubMed  CAS  Google Scholar 

  141. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet 1999; 15:59–65.

    Article  PubMed  CAS  Google Scholar 

  142. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: The right shape in the right place. J Dent Res 1999; 78:826–34.

    PubMed  CAS  Google Scholar 

  143. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000; 92:19–29.

    Article  PubMed  CAS  Google Scholar 

  144. Farbman AI, Mbiene JP. Early development and innervation of taste bud-bearing papillae on the rat tongue. J Comp Neurol 1991; 304:172–86.

    Article  PubMed  CAS  Google Scholar 

  145. Jung HS, Oropeza V, Thesleff I. Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae. Mech Dev 1999; 81:179–82.

    Article  PubMed  CAS  Google Scholar 

  146. Mistretta CM, Liu HX, Gaffield W et al. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: Fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev Biol 2003; 254:1–18.

    Article  PubMed  CAS  Google Scholar 

  147. Melnick M, Chen H, Zhou Y et al. Embryonic mouse submandibular salivary gland morphogenesis and the TNF/TNF-R1 signal transduction pathway. Anat Rec 2001; 262:318–30.

    Article  PubMed  CAS  Google Scholar 

  148. Cutler LS, Gremski W. Epithelial-mesenchymal interactions in the development of salivary glands. Crit Rev Oral Biol Med 1991; 2:1–12.

    PubMed  CAS  Google Scholar 

  149. Helms JA, Cordero D, Tapadia MD. New insights into craniofacial morphogenesis. Development 2005; 132:851–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Cordero, D., Tapadia, M., Helms, J.A. (2006). Sonic Hedgehog Signaling in Craniofacial Development. In: Hedgehog-Gli Signaling in Human Disease. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33777-6_13

Download citation

Publish with us

Policies and ethics