Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1165 Accesses

Abstract

In this chapter we describe the special properties of insect muscle thin filament proteins and the way in which they differ from those in vertebrates. As in the vertebrate, the repeating unit of the muscle fibre (sarcomere) contains interdigitated thick (myosin containing) and thin (actin containing) filaments which generate the contractile force. The backbone of the insect muscle thin filament is provided by the helical F-actin polymer. Other proteins along the thin filament are modified versions of proteins present in the vertebrate thin filament. These include arthrin (ubiquitinated actin) and a heavy troponin subunit (TnH). The latter differs in the two insects studied, Drosophila and Lethocerus, and is absent in the vertebrate. The main functional difference in the insect thin insect filaments is between those in indirect flight muscles (IFM) and all other muscles. The IFM can be regulated at much higher frequencies by the process known as “stretch activation”. The mechanism of stretch activation is still not completely understood but it now appears that troponin-C, a normal regulatory component of the thin filaments, is involved. A small amount of high resolution information is now available for the vertebrate troponin complex and we have tried to incorporate this into what other structural data is available for the insect thin filament. The partial X-ray structure for the vertebrate troponin complex would fit within the density envelope found for insect troponin but, as expected, does not account for all the density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pringle J. Stretch activation of muscle: Function and mechanism. Proc Roy Soc Lond B 1978; 201:107–130.

    Article  CAS  Google Scholar 

  2. Agianian B, Krzic U, Qiu F et al. A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J 2004; 23(4):772–779.

    Article  PubMed  CAS  Google Scholar 

  3. Ruiz T, Bullard B, Lepault J. Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments. J Muscle Res Cell Motil 1998; 19(4):353–364.

    Article  PubMed  CAS  Google Scholar 

  4. Egelman EH, Francis N, DeRosier DJ. F-actin is a helix with a random variable twist. Nature 1982; 298(5870):131–135.

    Article  PubMed  CAS  Google Scholar 

  5. Reedy MK. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol 1968; 31(2):155–176.

    Article  PubMed  CAS  Google Scholar 

  6. Bullard B, Bell J, Craig R et al. Arthrin: A new actin-like protein in insect flight muscle. J Mol Biol 1985; 182(3):443–454.

    Article  PubMed  CAS  Google Scholar 

  7. Ball E, Karlik CC, Beall CJ et al. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 1987; 51(2):221–228.

    Article  PubMed  CAS  Google Scholar 

  8. Burgess S, Walker M, Knight PJ et al. Structural studies of arthrin: Monoubiquitinated actin. J Mol Biol 2004; In Press.

    Google Scholar 

  9. Schmitz S, Schankin CJ, Prinz H et al. Molecular evolutionary convergence of the flight muscle protein arthrin in diptera and hemiptera. Mol Biol Evol 2003; 20:2019–2033.

    Article  PubMed  CAS  Google Scholar 

  10. Galkin VE, Orlova A, Lukoyanova N et al. The location of ubiquitin in Lethocerus arthrin. J Mol Biol 2003; 325(4):623–628.

    Article  PubMed  CAS  Google Scholar 

  11. Bullard B, Leonard K, Larkins A et al. Troponin of asynchronous flight muscle. J Mol Biol 1988; 204(3):621–637.

    Article  PubMed  CAS  Google Scholar 

  12. Karlik CC, Fyrberg EA. Two Drosophila melanogaster tropomyosin genes: Structural and functional aspects. Mol Cell Biol 1986; 6(6):1965–1973.

    PubMed  CAS  Google Scholar 

  13. Peckham M, Cripps RM, White DCS et al. Mechanics and protein content of insect flight muscles. J Exp Biol 1992; 168:57–76.

    CAS  Google Scholar 

  14. Clayton JD, Cripps RM, Sparrow JC et al. Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 1998; 19(2):117–127.

    Article  PubMed  CAS  Google Scholar 

  15. Agianian B, Tucker PA, Schouten A et al. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipi peroxidation products. J Mol Biol 2003; 326(1):151–165.

    Article  PubMed  CAS  Google Scholar 

  16. White SP, Cohen C, Phillips Jr GN. Structure of co-crystals of tropomyosin and troponin. Nature 1987; 325(6107):826–828.

    Article  PubMed  CAS  Google Scholar 

  17. Wendt T, Guenebaut V, Leonard KR. Structure of the Lethocerus troponin-tropomyosin complex as determined by electron microscopy. J Struct Biol 1997; 118(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  18. Greenfield NJ, Swapna GV, Huang Y et al. The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices. Biochemistry 2003; 42(3):614–619.

    Article  PubMed  CAS  Google Scholar 

  19. Qiu F, Lakey A, Agianian B et al. Troponin C in different insect muscle types: Identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect. Biochem J 2003; 371(Pt 3):811–821.

    Article  PubMed  CAS  Google Scholar 

  20. van Straaten M, Goulding D, Kolmerer B et al. Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol 1999; 285(4):1549–1562.

    Article  PubMed  Google Scholar 

  21. Kulke M, Neagoe C, Kolmerer B et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J Cell Biol 2001; 154(5):1045–1057.

    Article  PubMed  CAS  Google Scholar 

  22. Labeit S, Gibson T, Lakey A et al. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 1991; 282(2):313–316.

    Article  PubMed  CAS  Google Scholar 

  23. Kabsch W, Mannherz HG, Suck D et al. Atomic structure of the actin: DNase I complex. Nature 1990; 347(6288):37–44.

    Article  PubMed  CAS  Google Scholar 

  24. Herzberg O, James MN. Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry 1985; 24(20):5298–5302.

    Article  PubMed  CAS  Google Scholar 

  25. Lorenz M, Poole KJ, Popp D et al. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 1995; 246(1):108–119.

    Article  PubMed  CAS  Google Scholar 

  26. Stewart M. Tropomyosin: Evidence for no stagger between chains. FEBS Lett 1975; 53:1–5.

    Article  Google Scholar 

  27. Bullard B, Mercola DA, Mommaerts WF. The origin of the tyrosyl circular dichroism of tropomyosin. Biochim Biophys Acta 1976; 434(1):90–99.

    PubMed  CAS  Google Scholar 

  28. Whitby FG, Phillips Jr GN. Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 2000; 38(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  29. Lehman W, Craig R, Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 1994; 368(6466):65–67.

    Article  PubMed  CAS  Google Scholar 

  30. Slupsky CM, Sykes BD. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 1995; 34(49):15953–15964.

    Article  PubMed  CAS  Google Scholar 

  31. Takeda S, Yamashita A, Maeda K et al. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 2003; 424(6944):35–41.

    Article  PubMed  CAS  Google Scholar 

  32. Ferguson RE, Sun YB, Mercier P et al. In situ orientations of protein domains: Troponin C in skeletal muscle fibers. Mol Cell 2003; 11(4):865–874.

    Article  PubMed  CAS  Google Scholar 

  33. Wendt T, Leonard K. Structure of the insect troponin complex. J Mol Biol 1999; 285(4):1845–1856.

    Article  PubMed  CAS  Google Scholar 

  34. Reedy MC, Reedy MK, Leonard KR et al. Gold/Fab immuno electron microscopy localization of troponin H and troponin T in Lethocerus flight muscle. J Mol Biol 1994; 239(1):52–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Leonard, K.R., Bullard, B. (2006). The Thin Filament in Insect Flight Muscle. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_11

Download citation

Publish with us

Policies and ethics