Skip to main content

The “Hemolysis Model” for the Study of Cyto-Toxicity and Cyto-Protection by Bile Salts and Phospholipids

  • Conference paper
Oxygen Transport to Tissue XXVII

5. Conclusions

The hemolysis of human erythrocytes can be proposed as a valuable in vitro model to study the interaction of different molecules with the plasma membrane: given its simplicity and versatility, this method provides a reliable tool to screen potentially damaging or protective compounds like drugs, nutrients and endogenous molecules, with relevance to the pathophysiology and treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. R. Coleman, P. J. Lowe, and D. Billington. Membrane lipid composition and susceptibility to bile salt damage. Biochim Biophys Acta 599, 294–300 (1980).

    Article  Google Scholar 

  2. A. Moschetta, G. P. van Berge-Henegouwen, P. Portincasa, G. Palasciano, A. K. Groen, and K. J. van Erpecum. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts. J Lipid Res 41, 916–924 (2000).

    Google Scholar 

  3. J. A. Lapre, D. S. M. Termont, A. K. Groen, and R. van der Meer. Lytic effects of mixed micelles of fatty acids and bile acids. Am J Physiol 263(26), G333–G337 (1992).

    Google Scholar 

  4. A. L. M. Velardi, A. K. Groen, R. P. Oude Elferink, R. van der Meer, G. Palasciano, and G. N. Tytgat. Cell type-dependent effect of phospholipid and cholesterol on bile salt cytotoxicity. Gastroenterology 101, 457–464 (1991).

    Google Scholar 

  5. A. Moschetta, G. P. vanBerge-Henegouwen, P. Portincasa, W. Renooij, A. K. Groen, K. J. van Erpecum. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J Hepatol 34(4), 492–499 (2001).

    Article  Google Scholar 

  6. A. F. Hofmann. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159(22), 2647–2658 (1999).

    Article  Google Scholar 

  7. A. F. Hofmann. Bile Acids: The Good, the Bad, and the Ugly. News Physiol Sci 14, 24–29 (1999).

    ADS  Google Scholar 

  8. D. M. Heuman, W. M. Pandak, P. B. Hylemon, and Z. R. Vlahcevic. Conjugates of ursodeoxycholate protect against toxicity of more hydrophobic bile salts: In vitro studies in rat hepatocytes and human erythrocytes. Hepatology 14(5), 920–926 (1991).

    Article  Google Scholar 

  9. L. Amigo, H. Mendoza, S. Zanlungo, J. F. Miquel, A. Rigotti, S. Gonzalez et al. Enrichment of canalicular membrane with cholesterol and sphingomyelin prevents bile salt-induced hepatic damage. J Lipid Res 40, 533–542 (1999).

    Google Scholar 

  10. G. A. Kullak-Ublick, B. Stieger, P. J. Meier. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1), 322–342 (2004).

    Article  Google Scholar 

  11. D. M. Heuman. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity. Ital J Gastroenterol 27(7), 372–375 (1995).

    Google Scholar 

  12. R. Coleman, S. Iqbal, P. P. Godfrey, and D. Billington. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J 178, 201–208 (1979).

    Google Scholar 

  13. J. J. Smit, A. H. Schinkel, R. P. J. Oude Elferink, A. K. Groen, E. Wagenaar, L. van Deemter et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3), 451–462 (1993).

    Article  Google Scholar 

  14. T. Kremmer, M. H. Wisher, and W. H. Evans. The lipid composition of plasma membrane subfractions originating from the three major functional domains of the rat hepatocyte cell surface. Biochim Biophys Acta 455(3), 655–664 (1976).

    Article  Google Scholar 

  15. J.A. Higgins, and W. H. Evans. Transverse organization of phospholipids across the bilayer of plasma membrane subfractions of rat hepatocytes. Biochem J 174, 563–567 (1978).

    Google Scholar 

  16. D. Alvaro, A. Cantafora, A. F. Attili, S. C. Ginanni, C. De Luca, G. Minervini et al. Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comp Biochem Physiol [B] 83(3), 551–554 (1986).

    Article  Google Scholar 

  17. S. G. Barnwell, B. Tuchweber, and I. M. Yousef. Biliary lipid secretion in the rat during infusion of increasing doses of unconjugated bile acids. Biochim Biophys Acta 922(2), 221–233 (1987).

    Google Scholar 

  18. J. M. Donovan, N. Timofeyeva, and M. C. Carey. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. J Lipid Res 32, 1501–1512 (1991).

    Google Scholar 

  19. J. M. Donovan, A. A. Jackson. Rapid determination by centrifugal ultrafiltration of inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile: influence of Donnan equilibrium effects. J Lipid Res 34, 1121–1129 (1993).

    Google Scholar 

  20. J. M. Donovan, A. A. Jackson, and M. C. Carey. Molecular species composition of inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance. J Lipid Res 34, 1131–1140 (1993).

    Google Scholar 

  21. N. A. Mazer, G. B. Benedek, and M. C. Carey. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry 19(4), 601–615 (1980).

    Article  Google Scholar 

  22. K. J. van Erpecum, and M. C. Carey. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability. Biochim Biophys Acta 1345(3), 269–282 (1997).

    Google Scholar 

  23. D. B. Mitchell, K. S. Santone, and D. Acosta. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J Tissue Cult Methods 6, 113–116 (1980).

    Article  Google Scholar 

  24. L. Puglielli, L. Amigo, M. Arrese, L. Nunez, A. Rigotti, J. Garrido et al. Protective role of biliary cholesterol and phospholipid lamellae against bile acid-induced cell damage. Gastroenterology 107, 244–254 (1994).

    Google Scholar 

  25. P. K. Narain, E. J. DeMaria, and D. M. Heuman. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. J Surg Res 84(1), 112–119 (1999).

    Article  Google Scholar 

  26. J. M. Barrios, and L. M. Lichtenberger. Role of biliary phosphatidylcholine in bile acid protection and NSAID injury of the ileal mucosa in rats. Gastroenterology 118(6), 1179–1186 (2000).

    Article  Google Scholar 

  27. F. Carubbi, M. E. Guicciardi, M. Concari, P. Loria, M. Bertolotti, and N. Carulli. Comparative cytotoxic and cytoprotective effects of taurohyodeoxycholic acid (THDCA) and tauroursodeoxycholic acid (TUDCA) in HepG2 cell line. Biochim Biophys Acta 1580(1), 31–39 (2002).

    Google Scholar 

  28. B. A. van Gorkom, M. R. van der Meer, W. Boersma-van Ek, D. S. Termont, E. G. de Vries, and J. H. Kleibeuker. Changes in bile acid composition and effect on cytolytic activity of fecal water by ursodeoxycholic acid administration: a placebo-controlled cross-over intervention trial in healthy volunteers. Scand J Gastroenterol 37(8), 965–971 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Portincasa, P. et al. (2006). The “Hemolysis Model” for the Study of Cyto-Toxicity and Cyto-Protection by Bile Salts and Phospholipids. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_15

Download citation

Publish with us

Policies and ethics