Skip to main content

Molecular Mechanisms of Male Sex Determination

The Enigma of SRY

  • Chapter
DNA Conformation and Transcription

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1201 Accesses

Abstract

The human testis-determining gene Sry, a single-copy gene on the short arm of the Y chromosome, encodes a high-mobility-group (HMG) box, a DNA-bending motif conserved among architectural transcription factors. The SRY-DNA complex exhibits a dramatic reorganization of the double helix. Although Sry-related Sox genes are of broad interest in relation to development, the mechanistic role of SRY in gene regulation has remained enigmatic. It is not known whether the HMG box is the sole functional domain of the protein. Additional unresolved issues include identification of target genes and interacting proteins. Although sex-reversal mutations commonly impair DNA binding, this correlation is not rigorous and does not exclude alternative regulatory mechanisms, such as possible SRY-directed RNA splicing. New studies of transgenic XX mice expressing chimeric SRY proteins suggest a powerful methodology to investigate structure-function relationships. Progress may benefit from genetic, genomic- and proteomic-based technologies to delineate the downstream pathway of SRY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovell-Badge R. Sex determining gene expression during embryogenesis. Philos Trans R Soc Lond B Biol Sci 1993;339:159–164.

    Article  PubMed  CAS  Google Scholar 

  2. Sinclair AH, Berta P, Palmer MS et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346:240–244.

    Article  PubMed  CAS  Google Scholar 

  3. Goodfellow PN, Lovell-Badge R. SRY and sex determination in mammals. Annu Rev Genet 1993; 27:71–92.

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell CL, Harley VR. Biochemical defects in eight SRY missense mutations causing XY gonadal dysgenesis. Molec Genet Metab 2002; 77:217–225.

    Article  CAS  Google Scholar 

  5. Koopman P, Gubbay J, Vivian N et al. Male development of chromosomally female mice transgenic for Sry. Nature 1991; 351:117–121.

    Article  PubMed  CAS  Google Scholar 

  6. Berta P, Hawkins JR, Sinclair AH et al. Genetic evidence equating SRY and the testis-determining factor. Nature 1990; 348:448–450.

    Article  PubMed  CAS  Google Scholar 

  7. McElreavy K, Vilain E, Abbas N et al. XY sex reversal associated with a deletion 5′ to the SRY “HMG box” in the testis-determining region. Proc Natl Acad Sci USA 1992; 89:11016–11020.

    Article  PubMed  CAS  Google Scholar 

  8. Hawkins JR, Taylor A, Berta P et al. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum Genet 1992; 88:471–474.

    Article  PubMed  CAS  Google Scholar 

  9. Harley VR, Jackson DI, Hextall PJ et al. DNA binding activity of recombinant SRY from normal males and XY females. Science 1992; 255:453–456.

    Article  PubMed  CAS  Google Scholar 

  10. Vilain E, Jaubert F, Fellous M et al. Pathology of 46, XY pure gonadal dysgenesis absence of testis differentiation associated with mutations in the testis-determining factor. Differentiation 1993; 52:151–159.

    Article  PubMed  CAS  Google Scholar 

  11. Gubbay J, Collignon J, Koopman P et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990; 346:245–250.

    Article  PubMed  CAS  Google Scholar 

  12. Ner SS. HMGs everywhere. Curr Biol 1992; 2:208–210.

    Article  PubMed  CAS  Google Scholar 

  13. Werner HM, Huth JR, Gronenborn AM et al. Molecular basis of human 46X,Y sex reversal re vealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 1995; 81:705–714.

    Article  PubMed  CAS  Google Scholar 

  14. Love JJ, Li X, Case DA et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 1995; 376:791–795.

    Article  PubMed  CAS  Google Scholar 

  15. Grosschedl R. Higher-order nucleoprotein complexes in transcription: analogies with site-specific recombination. Curr Opin Cell Biol 1995; 7:362–370.

    Article  PubMed  CAS  Google Scholar 

  16. Kornberg RD, Lorch Y. Interplay between chromatin structure and transcription. Curr Opin Cell Biol 1995; 7:371–375.

    Article  PubMed  CAS  Google Scholar 

  17. Bewley CA, Gronenborn AM, Clore GM. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Ann Rev Biophys Biomol Struct 1998; 27:105–131.

    Article  CAS  Google Scholar 

  18. Pevny LH, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev 1997; 7:338–344.

    Article  PubMed  CAS  Google Scholar 

  19. Wegner M. From head to toes: the multiple facets of Sox protein. Nucleic Acids Res 1999; 6:1409–1420.

    Article  Google Scholar 

  20. Foster JW, Dominguez-Steglich MA, Guioli S et al. Campomelic dysplasia and autosomal sex re versal caused by mutations in an SRY-related gene. Nature 1994; 372:525–530.

    Article  PubMed  CAS  Google Scholar 

  21. Wagner T, Wirth J, Meyer J et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79:1111–1120.

    Article  PubMed  CAS  Google Scholar 

  22. Bergstrom DE, Young M, Albrecht KH et al. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 2000; 28:111–124.

    Article  PubMed  CAS  Google Scholar 

  23. Lovell-Badge R, Canning C, Sekido R. Sex-determining genes in mice: building pathways. In: Chadwick D, Good J, eds. The Genetics and Biology of Sex Determination. West Sussex: John Wiley & Sons Ltd., 2002:4–22.

    Chapter  Google Scholar 

  24. Read CM, Cary PD, Crane-Robinson C et al. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 1993; 21:3427–3436.

    Article  PubMed  CAS  Google Scholar 

  25. Weir HM, Kraulis PJ, Hill CS et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J 1993; 12:311–319.

    Google Scholar 

  26. Jones DN, Searles MA, Shaw GL et al. The solution structure and dynamics of the DNA-binding domain of HMG-D from Drosophila melanogaster. Structure 1994; 2:609–627.

    Article  PubMed  CAS  Google Scholar 

  27. Hardman CH, Broadhurst RW, Raine AR et al. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronudear three-and four-dimensional NMR spectroscopy. Biochemistry 1995; 34:16596–16607.

    Article  PubMed  CAS  Google Scholar 

  28. Ohndorf UM, Rould MA, He Q et al. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 1999; 399:708–712.

    Article  PubMed  CAS  Google Scholar 

  29. Murphy FV, Sweet RM, Churchill ME. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J 1999; 18:6610–6618.

    Article  PubMed  CAS  Google Scholar 

  30. Allain FH, Yen YM, Masse JE et al. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO J 1999; 18:2563–2579.

    Article  PubMed  CAS  Google Scholar 

  31. Masse JE, Wong B, Yen Y-M et al. The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J Mol Biol 2002; 323:263–284.

    Article  PubMed  CAS  Google Scholar 

  32. Murphy FV 4th, Churchill ME. Nonsequence-specific DNA recognition: a structural perspective. Structure Fold Des 2000; 8:R83–89.

    Article  PubMed  CAS  Google Scholar 

  33. Travers A. Recognition of distorted DNA structures by HMG domains. Curr Opin Struct Biol 2000; 10:102–109.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy EC, Zhurkin VB, Louis JM et al. Structural basis for SRY-dependent 46-X,Y sex reversal: modulation of DNA bending by a naturally occurring point mutation. J Mol Biol 2001; 312:481–499.

    Article  PubMed  CAS  Google Scholar 

  35. King CY, Weiss MA. The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: a topological mechanism of sequence specificity. Proc Natl Acad Sci USA 1993; 90:11990–11994.

    Article  PubMed  CAS  Google Scholar 

  36. Haqq CM, King CY, Ukiyama E et al. Molecular basis of mammalian sexual determination: acti vation of Mullerian inhibiting substance gene expression by SRY. Science 1994; 266:1494–1500.

    Article  PubMed  CAS  Google Scholar 

  37. Remenyi A, Lins K, Nissen LJ et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 2003; 17:2048–2059.

    Article  PubMed  CAS  Google Scholar 

  38. Williams DCJ, Cai M, Clore GM. Molecular basis for synergistic transcriptional activation by Octl and Sox2 revealed from the solution structure of the 42-kDa Octl.Sox2.Hoxb1/-DNA ternary transcription factor complex. J Biol Chem 2004; 279:1449–1457.

    Article  PubMed  CAS  Google Scholar 

  39. Sudbeck P, Scherer G. Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem 1997; 272:27848–27852.

    Article  PubMed  CAS  Google Scholar 

  40. Li B, Zhang W, Chan G et al. Human sex reversal due to impaired nuclear localization of SRY. A clinical correlation. J Biol Chem 2001; 276:46480–46484.

    Article  PubMed  CAS  Google Scholar 

  41. Poulat F, Soullier S, Goze C et al. Description and functional implications of a novel mutation in the sex-determining gene SRY. Hum Mutat 1994; 3:200–204.

    Article  PubMed  CAS  Google Scholar 

  42. Schmitt-Ney M, Thiele H, Kaltwasser P et al. Two novel SRY missense mutations reducing DNA binding identified in XY females and their mosaic fathers. Am J Hum Genet 1995; 56:862–869.

    PubMed  CAS  Google Scholar 

  43. Veitia R, Ion A, Barbaux S et al. Mutations and sequence variants in the testis-determining region of the Y chromosome in individuals with a 46, XY female phenotype. Hum Genet 1997; 99:648–652.

    Article  PubMed  CAS  Google Scholar 

  44. Lundberg Y, Ritzén M, Harlin J et al. Novel Missense mutation (P131R) in the HMG box of SRY in XY sex reversal. Hum Mutat 1998; Suppl. 1:S328.

    Google Scholar 

  45. Harley VR, Layfield S, Mitchell CL et al. Defective importin β recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proc Natl Acad Sci USA 2003; 100:7045–7050.

    Article  PubMed  CAS  Google Scholar 

  46. Giese K, Amsterdam A, Grosschedl R. DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev 1991; 5:2567–2578.

    Article  PubMed  CAS  Google Scholar 

  47. Carlsson P, Waterman ML, Jones KA. The hLEF/TCF-l(X HMG protein contains a context-dependent transcriptional activation domain that induces the TCRα enhancer in T cells. Genes Dev 1993; 7:2418–2430.

    Article  PubMed  CAS  Google Scholar 

  48. Read CM, Cary PD, Preston NS et al. The DNA sequence specificity of HMG boxes lies in the minor wing of the structure. EMBO J 1994; 13:5639–5646.

    PubMed  CAS  Google Scholar 

  49. Lnenicek-Allen M, Read CM, Crane-Robinson C. The DNA bend angle and binding affinity of an HMG box increased by the presence of short terminal arms. Nucleic Acids Res 1996; 24:1047–1051.

    Article  PubMed  CAS  Google Scholar 

  50. van Houte LP, Chuprina VP, van der Wetering M et al. Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem 1995; 270:30516–30524.

    Article  PubMed  Google Scholar 

  51. Crane-Robinson C, Read CM, Cary PD et al. The energetics of HMG box interactions with DNA. Thermodynamic description of the box from mouse Sox-5. J Mol Biol 1998; 281:705–717.

    Article  PubMed  CAS  Google Scholar 

  52. Redfield C, Smith RA, Dobson CM. Structural characterization of a highly-ordered ‘molten globule’ at low pH. Nat Struct Biol 1994; 1:23–29.

    Article  PubMed  CAS  Google Scholar 

  53. Weiss MA. Floppy SOX: mutual induced fit in HMG (High-Mobility Group) Box-DNA recognition. Mol Endocrin 2001; 15:353–362.

    Article  CAS  Google Scholar 

  54. Whitfield LS, Lovell-Badge R, Goodfellow PN. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 1993; 364:713–715.

    Article  PubMed  CAS  Google Scholar 

  55. Coward P, Nagai K, Chen D et al. Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6.YDom sex reversal. Nat Genet 1994; 6:245–250.

    Article  PubMed  CAS  Google Scholar 

  56. Gubbay J, Vivian N, Economou A et al. Inverted repeat structure of the Sry locus in mice. Proc Natl Acad Sci USA 1992; 89:7953–7957.

    Article  PubMed  CAS  Google Scholar 

  57. Dubin RA, Ostrer H. Sry is a transcriptional activator. Mol Endocrinol 1994; 8:1182–1192.

    Article  PubMed  CAS  Google Scholar 

  58. Giese K, Pagel J, Grosschedl R. Distinct DNA-binding properties of the high mobility group do main of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 1994; 91:3368–3372.

    Article  PubMed  CAS  Google Scholar 

  59. Bowles J, Cooper L, Berkman J et al. SRY requires a CAG repeat domain for male determination in Mus musculus. Nat Genet 1999; 22:405–408.

    Article  PubMed  CAS  Google Scholar 

  60. Poulat F, Girard F, Chevron MP et al. Nuclear localization of the testis determining gene product SRY. J Cell Biol 1995; 128:737–748.

    Article  PubMed  CAS  Google Scholar 

  61. Pontiggia A, Whitfield S, Goodfellow PN et al. Evolutionary conservation in the DNA-binding and-bending properties of HMG-boxes from SRY proteins of primates. Gene 1995; 154:277–280.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrari S, Harley VR, Pontiggia A et al. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J 1992; 11:4497–4506.

    PubMed  CAS  Google Scholar 

  63. Pontiggia A, Rimini R, Harley VR et al. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 1994; 13:6115–6124.

    PubMed  CAS  Google Scholar 

  64. Giese K, Grosschedl R. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J 1993; 12:4667–4676.

    PubMed  CAS  Google Scholar 

  65. Yuan H, Corbi N, Basilico C et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995; 9:2635–2645.

    Article  PubMed  CAS  Google Scholar 

  66. Kamachi Y, Sockanathan S, Liu Q et al. Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J 1995; 14:3510–3519.

    PubMed  CAS  Google Scholar 

  67. Bell DM, Leung KK, Wheatley SC et al. SOX9 directly regulates the type-II collagen gene. Nat Genet 1997; 16:174–178.

    Article  PubMed  CAS  Google Scholar 

  68. Scaffidi P, Bianchi ME. Spatially precise DNA bending is an essential activity of the sox2 tran scription factor. J Biol Chem 2001; 276:47296–47302.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang P, Jimenez SA, Stokes DG. Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem 2003; 278:117–123.

    Article  PubMed  CAS  Google Scholar 

  70. Ohe K, Lalli E, Sassone-Corsi P. A direct role of SRY and SOX proteins in pre-mRNA splicing. Proc Natl Acad Sci USA 2002; 99:1146–1151.

    Article  PubMed  CAS  Google Scholar 

  71. Lalli E, Ohe K, Latorre E et al. Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals. J Cell Sci 2003; 116:441–445.

    Article  PubMed  CAS  Google Scholar 

  72. Pivnick EK, Wachtel S, Woods D et al. Mutations in the conserved domain of SRY are uncommon in XY gonadal dysgenesis. Hum Genet 1992; 90:308–310.

    Article  PubMed  CAS  Google Scholar 

  73. Lau Y-FC, Zhang J. Sry interactive proteins: implication for the mechanisms of sex determination. Cytogenet Cell Genet 1998; 80:128–132.

    Article  PubMed  CAS  Google Scholar 

  74. Eicher EM, Washburn LL, Schork NJ et al. Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6J-YPOS sex reversal. Nat Genet 1996; 14:206–209.

    Article  PubMed  CAS  Google Scholar 

  75. Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nudeoprotein structures. Cell 1992; 69:185–195.

    Article  PubMed  CAS  Google Scholar 

  76. Graves JAM. Two uses for old SOX. Nat Genet 1997; 16:114–115.

    Article  PubMed  CAS  Google Scholar 

  77. Maniatis T, Falvo JV, Kim TH et al. Structure and function of the interferon-β enhanceosome. Cold Spring Harb Symp Quant Biol 1998; 63:609–620.

    Article  PubMed  CAS  Google Scholar 

  78. Adhya S, Geanacopoulos M, Lewis DE et al. Transcription regulation by repressosome and by RNA polymerase contact. Cold Spring Harb Symp Quant Biol 1998; 63:1–9.

    Article  PubMed  CAS  Google Scholar 

  79. Domenice S, Yumie Nishi M, Correia Billerbeck AE et al. A novel missense mutation (S18N) in the 5′ non-HMG box region of the SRY gene in a patient with partial gonadal dysgenesis and his normal male relatives. Hum Genet 1998; 102:213–215.

    Article  PubMed  CAS  Google Scholar 

  80. Assumpcao JG, Benedetti CE, Maciel-Guerra AT et al. Novel mutations affecting SRY DNA-binding activity: the HMB box N65H associated with 46, XY pure gonadal dysgenesis and the familial non-HMG box R301 associated with variable phenotypes. J Mol Med 2002; 80:782–790.

    Article  PubMed  CAS  Google Scholar 

  81. Desclozeaux M, Poulat F, de Santa Barbara P et al. Phosphorylation of an N-terminal motif enhances DNA-binding activity of the human SRY protein. J Biol Chem 1998; 273:7988–7995.

    Article  PubMed  CAS  Google Scholar 

  82. Tajima T, Nakae J, Shinohara N et al. A novel mutation localized in the 3′ non-HMG box region of the SRY gene in 46, XY gonadal dysgenesis. Hum Mol Genet 1994; 3:1187–1189.

    Article  PubMed  CAS  Google Scholar 

  83. Poulat F, Barbara PS, Desclozeaux M et al. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J Biol Chem 1997; 272:7167–7172.

    Article  PubMed  CAS  Google Scholar 

  84. Jäger RJ, Harley VR, Pfeiffer RA et al. A familial mutation in the testis-determining gene SRY shared by both sexes. Hum Genet 1992; 90:350–355.

    Article  PubMed  Google Scholar 

  85. Hiort O. True hermaphroditism with 46, XY karyotype and a point mutation in the SRY gene. J Pediatrics 1995; 126:1022.

    Article  CAS  Google Scholar 

  86. Benevides JM, Chan G, Lu XJ et al. Protein-directed DNA structure. I. Raman spectroscopy of a high-mobility-group box with application to human sex reversal. Biochemistry 2000; 39:537–547.

    Article  PubMed  CAS  Google Scholar 

  87. Rice PA, Yang S, Mizuuchi K et al. Crystal structure of an IGF-DNA complex: a protein-induced DNA U-turn. Cell 1996; 87:1295–1306.

    Article  PubMed  CAS  Google Scholar 

  88. Parekh BS, Hatfield GW. Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. Proc Natl Acad Sci USA 1996; 93:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  89. Engelhorn M, Geiselmann J. Maximal transcriptional activation by the IHF protein of Escherichia coli depends on optimal DNA bending by the activator. J Mol Microbiol 1998; 30:431–441.

    Article  CAS  Google Scholar 

  90. Ukiyama E, Jancso-Radek A, Li B et al. SRY and architectural gene regulation: the kinetic stability of a bent protein-DNA complex can regulate its transcriptional potency. Mol Endocrinol 2001; 15:363–377.

    Article  PubMed  CAS  Google Scholar 

  91. Giese K, Pagel J, Grosschedl R. Functional analysis of DNA bending and unwinding by the high mobility group domain of LEF-1. Proc Natl Acad Sci USA 1997; 94:12845–12850.

    Article  PubMed  CAS  Google Scholar 

  92. Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr Rev 2003; 24:466–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Weiss, M.A. (2005). Molecular Mechanisms of Male Sex Determination. In: DNA Conformation and Transcription. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29148-2_12

Download citation

Publish with us

Policies and ethics