Skip to main content

From Electrogenesis to Electroreception: An Overview

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alves-Gomes J, Hopkins CD (1997) Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organs. Brain Behav Evol 49:324–350.

    PubMed  CAS  Google Scholar 

  • Baron VD, Pavlov DS (2003) Discovery of specialized electrogenerating activity in two species of Polypterus (Polypteriformes, Osteichthyes). J Ichthyol 43:S259–S261.

    Google Scholar 

  • Baron VD, Morshnev KS, Olshansky VM, Orlov AA (1994a) Electric organ discharges of two species of African catfish (Synodontis) during social behaviour. Anim Behav 48:1472–1475.

    Article  Google Scholar 

  • Baron VD, Orlov AA, Golubtsov AS (1994b) African Clarias catfish elicits long-lasting weak electric pulses. Experientia 50:644–647.

    Article  Google Scholar 

  • Baron VD, Orlov AA, Golubtsov AS (1996) Detection of electric organ discharges in African catfish Auchenoglandis occidentalis (Siluriformes: Bagridae). Dokl Biol Sci 349:377–379.

    Google Scholar 

  • Bass AH (1986) Electric organs revisited: evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 13–70.

    Google Scholar 

  • Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge waveform. Science 220:971–974.

    PubMed  CAS  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds), Fish Physiology, Vol. 5: Sensory Systems and Electric Organs. New York: Academic Press, pp. 347–491.

    Google Scholar 

  • Bensouilah M, Schugardt C, Roesler R, Kirschbaum F, Denizot J-P (2002) Larval electroreceptors in the epidermis of mormyrid fish: I. Tuberous organs of type A and B. J Comp Neurol 447:309–322.

    Article  PubMed  Google Scholar 

  • Bodznick D, Boord RL (1986) Electroreception in chondrichthyes: central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 225–256.

    Google Scholar 

  • Boudinot M (1970) The effect of decreasing and increasing temperature on the frequency of the electric organ discharge in Eigenmannia sp. Comp Biochem Physiol 37:601–603.

    Article  Google Scholar 

  • Bullock TH (1969) Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav Evol 2:85–118.

    Google Scholar 

  • Bullock TH (1982) Electroreception. Annu Rev Neurosci 5:121–170.

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (eds) (1986) Electroreception. New York: John Wiley & Sons.

    Google Scholar 

  • Bullock TH, Hagiwara S, Kusano K, Negishi K (1961) Evidence for a category of electroreceptors in the lateral line of gymnotid fishes. Science 134:1426–1427.

    Google Scholar 

  • Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in gymnotoid and gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis. J Comp Physiol A 103:97–121.

    Article  Google Scholar 

  • Changeux J-P (1993) Chemical signaling in the brain. Sci Am November: 58–62.

    Google Scholar 

  • Coates CW, Altamirano M, Grundfest H (1954) Activity in electrogenic organs of knife-fishes. Science 120:845–846.

    PubMed  CAS  Google Scholar 

  • Denizot J-P, Kirschbaum F, Westby GWM, Tsuji S (1978) The larval electric organ of the weakly electric fish Pollimyrus (Marcusenius) isidori (Mormyridae, Teleostei). J Neurocytol 7:165–181.

    Article  PubMed  CAS  Google Scholar 

  • Denizot J-P, Kirschbaum F, Westby GWM, Tsuji S (1982) On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation). J Neurocytol 11:913–934.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. J Comp Physiol A 183:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Dye J (1987) Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus. J Comp Physiol A 161: 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 71–102.

    Google Scholar 

  • Enger PS, Szabo T (1968) Effect of temperature on the discharge rates of the electric organ of some gymnotids. Comp Biochem Physiol 27:625–627.

    Article  PubMed  CAS  Google Scholar 

  • Engler G, Zupanc GKH (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 187:747–756.

    Article  PubMed  CAS  Google Scholar 

  • Engler G, Fogarty CM, Banks JR, Zupanc GKH (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660.

    Article  PubMed  CAS  Google Scholar 

  • Feldberg W, Fessard A (1942) The cholinergic nature of the nerves to the electric organ of the torpedo (Torpedo marmorata). J Physiol 101:200–216.

    PubMed  CAS  Google Scholar 

  • Feldberg W, Fessard A, Nachmansohn D (1939/40) The cholinergic nature of the nervous supply to the electrical organ of the torpedo (Torpedo marmorata). J Physiol 97:3P–5P.

    Google Scholar 

  • Feng AS (1976) The effect of temperature on a social behavior of weakly electric fish Eigenmannia virescens. Comp Biochem Physiol A 55:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari MB, Zakon HH (1989) The medullary pacemaker nucleus is unnecessary for electroreceptor tuning plasticity in Sternopygus. J Neurosci 9:1354–1361.

    PubMed  CAS  Google Scholar 

  • Fessard A, Szabo T (1961) Mise en évidence d’un récepteur sensible á l’électricité dans la peau des Mormyres. CR Acad Sci (Paris) 253:1859–1860.

    Google Scholar 

  • Fritzsch B, Münz H (1986) Electroreception in amphibians. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 483–496.

    Google Scholar 

  • Hagedorn M, Carr C (1985) Single electrocytes produce a sexually dimorphic signal in South American electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae). J Comp Physiol A 156:511–523.

    Article  Google Scholar 

  • Hagedorn M, Heiligenberg W (1985) Court and spark: electric signals in the courtship and mating of gymnotoid fish. Anim Behav 33:254–265.

    Article  Google Scholar 

  • Hagedorn M, Womble M, Finger TE (1990) Synodontid catfish: a new group of weakly electric fish. Behavior and anatomy. Brain Behav Evol 35:268–277.

    PubMed  CAS  Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J Comp Physiol 87:137–164.

    Article  Google Scholar 

  • Heiligenberg W (1991) Neural Nets in Electric Fish. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heiligenberg W, Keller CH, Metzner W, Kawasaki M (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: detection and processing of electric signals in social communication. J Comp Physiol A 169:151–164.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176: 1035–1037.

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol A 111:171–207.

    Article  Google Scholar 

  • Hopkins CD (1980) Evolution of electric communication channels of mormyrids. Behav Ecol Sociobiol 7:1–13.

    Article  Google Scholar 

  • Hopkins CD (1981) On the diversity of electric signals in a community of mormyrid electric fish in West Africa. Am Zool 21:211–222.

    Google Scholar 

  • Hopkins CD (1986) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 527–576.

    Google Scholar 

  • Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212:85–87.

    PubMed  CAS  Google Scholar 

  • Hopkins CD, Heiligenberg WF (1978) Evolutionary designs for electric signals and electoreceptors in gymnotoid fishes of Surinam. Behav Ecol Sociobiol 3:113–134.

    Article  Google Scholar 

  • Jørgensen JM (1982) Fine structure of the ampullary organs of the bichir Polypterus senegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic development of electroreceptors. Acta Zool (Stockholm) 63:211–217.

    Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology, Vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. Berlin: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elsmobranch fishes. Science 218:916–918.

    PubMed  CAS  Google Scholar 

  • Keller CH, Zakon HH, Sanchez DY (1986) Evidence for a direct effect of androgens upon electroreceptor tuning. J Comp Physiol A 158:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum F (1975) Environmental factors control the periodical reproduction of tropical electric fish. Experientia 31:1159–1160.

    Article  Google Scholar 

  • Kirschbaum F (1979) Reproduction of the weakly electric fish Eigenmannia virescens (Rhamphichtyidae, Teleostei) in captivity: I. Control of gonadal recrudescence and regression by environmental factors. Behav Ecol Sociobiol 4:331–355.

    Article  Google Scholar 

  • Kleerekoper H, Sibakin K (1956) An investigation of the electrical “spike” potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. I. J Fish Res Board Can 13:375–383.

    Google Scholar 

  • Kleerekoper H, Sibakin K (1957) An investigation of the electrical “spike” potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. II. J Fish Res Board Can 14:145–151.

    Google Scholar 

  • Knudsen EI (1975) Spatial aspects of the electric fields generated by weakly electric fish. J Comp Physiol 99:103–118.

    Article  Google Scholar 

  • Kramer B (1979) Electric and motor responses of the weakly electric fish, Gnathonemus petersii (Mormyridae), to play-back of social signals. Behav Ecol Sociobiol 6:67–79.

    Article  Google Scholar 

  • Kramer B (1999) Waveform discrimination, phase sensitivity and jamming avoidance in a wave-type electric fish. J Exp Biol 202:1387–1398.

    PubMed  Google Scholar 

  • Kramer B, Kaunzinger I (1991) Electrosensory frequency and intensity discrimination in the wave-type electric fish Eigenmannia. J Exp Biol 161:43–59.

    Google Scholar 

  • Kramer B, Otto B (1991) Waveform discrimination in the electric fish Eigenmannia: sensitivity for the phase differences between the spectral components of a stimulus wave. J. Exp. Biol. 159:1–22.

    Google Scholar 

  • Kramer B, Zupanc GKH (1986) Conditioned discrimination of electric waves differing only in form and harmonic content in the electric fish, Eigenmannia. Naturwissenschaften 73:679–680.

    Article  Google Scholar 

  • Kramer B, Kirschbaum F, Markl H (1981) Species specificity of electric organ discharges in a sympatric group of gymnotoid fish from Manaus (Amazonas). In: Szabó T, Czéh G (eds), Advances in Physiological Science, Vol. 31. Sensory Physiology of Aquatic Lower Vertebrates. Budapest: Pergamon Press/Akadémiai Kiadó, pp. 195–219.

    Google Scholar 

  • Larimer JL, MacDonald JA (1968) Sensory feedback from electroreceptors to electromotor pacemaker centers in gymnotids. Am J Physiol 214:1253–1261.

    PubMed  CAS  Google Scholar 

  • Lissmann HW (1951) Continuous electrical signals from the tail of a fish, Gymnarchus niloticus Cuv. Nature 167:201–202.

    Article  PubMed  CAS  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191.

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486.

    Google Scholar 

  • Lücker H, Kramer B (1981) Development of a sex difference in the preferred latency response in the weakly electric fish, Pollimyrus isidori (Cuvier et Valenciennes) (Mormyridae, Teleostei). Behav Ecol Sociobiol 9:103–109.

    Article  Google Scholar 

  • Maler L, Ellis WG (1987) Inter-male aggressive signals in weakly electric fish are modulated by monoamines. Behav Brain Res 25:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38.

    Article  PubMed  CAS  Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375.

    PubMed  CAS  Google Scholar 

  • Metzner W, Heiligenberg W (1991) The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain. J Comp Physiol A 169:135–150.

    Article  PubMed  CAS  Google Scholar 

  • Meyer DL, Heiligenberg W, Bullock TH (1976) The ventral substrate response: a new postural control mechanism in fishes. J Comp Physiol. A 109:59–68.

    Article  Google Scholar 

  • Meyer JH (1983) Steroid influences upon the discharge frequencies of a weakly electric fish. J Comp Physiol A 153:29–37.

    Article  CAS  Google Scholar 

  • Meyer JH, Zakon HH (1982) Androgens alter the tuning of electroreceptors. Science 217:635–637.

    CAS  PubMed  Google Scholar 

  • Moller P (1995) Electric Fishes: History and Behavior. London: Chapman & Hall.

    Google Scholar 

  • Murray RW (1960) Electrical sensitivity of the ampullae of Lorenzini. Nature 187:957.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1986) Electroreception in nonteleost bony fishes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 257–285.

    Google Scholar 

  • Piccolino M, Bresadola M (2002) Drawing a spark from darkness: John Walsh and electric fish. Trends Neurosci 25:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Roth A (1973) Electroreceptors in Brachiopterygii and Dipnoi. Naturwissenschaften 60: 106.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319:401–402.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JP, Lavoué S, Hopkins CD (2000) Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs. J Exp Biol 203:665–683.

    PubMed  CAS  Google Scholar 

  • Sullivan JP, Lavoué S, Hopkins CD (2002) Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei). Evolution 56:597–616.

    Article  PubMed  CAS  Google Scholar 

  • Szabo T (1970) Elektrische Organe und Elektrorezeption bei Fischen. In: Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge, N 205. Opladen: Westdeutscher Verlag, pp. 7–40

    Google Scholar 

  • von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167:413–421.

    Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215.

    PubMed  Google Scholar 

  • von der Emde G, Ringer T (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish: I. Discrimination performance. Ethology 91:326–338.

    Article  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Takeda K (1963) The change of discharge frequency by a.c. stimulus in a weak electric fish. J Exp Biol 40:57–66.

    Google Scholar 

  • Waxman SG, Anderson MJ (1986) Regeneration of central nervous system structures: Apteronotus spinal cord as a model system. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 183–208.

    Google Scholar 

  • Whittaker VP (1992) The Cholinergic Neuron and Its Target: The Electromotor Innervation of the Electric Ray Torpedo as a Model. Boston: Birkhüser.

    Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 103–156.

    Google Scholar 

  • Zakon HH, Meyer JH (1983) Plasticity of electroreceptor tuning in the weakly electric fish, Sternopygus dariensis. J Comp Physiol A 153:477–487.

    Article  Google Scholar 

  • Zakon HH, Unguez GA (1999) Development and regeneration of the electric organ. J Exp Biol 202:1427–1434.

    PubMed  CAS  Google Scholar 

  • Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446.

    PubMed  CAS  Google Scholar 

  • Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav Evol 58:250–275.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH (2002) From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. J Physiol (Paris) 96:459–472.

    CAS  Google Scholar 

  • Zupanc GKH, Clint SC (2003) Potential role of radial glia in adult neurogenesis of teleost fish. Glia 43:77–86.

    Article  PubMed  Google Scholar 

  • Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH, Maler L (1993) Evoked chirping in the weakly electric fish Apteronotus leptorhynchus: a quantitative biophysical analysis. Can J Zool 71:2301–2310.

    Article  Google Scholar 

  • Zupanc GKH, Maler L (1997) Neuronal control of behavioral plasticity: the prepacemaker nucleus of weakly electric gymnotiform fish. J Comp Physiol A 180:99–111.

    Article  Google Scholar 

  • Zupanc GKH, Banks JR, Engler G, Beason RC (2003) Temperature dependence of the electric organ discharge in weakly electric fish. In: Ploger BJ, Yasukawa K (eds), Exploring Animal Behavior in Laboratory and Field: An Hypothesis-Testing Approach to the Development, Causation, Function, and Evolution of Animal Behavior. Amsterdam: Academic Press, pp. 85–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Zupanc, G.K.H., Bullock, T.H. (2005). From Electrogenesis to Electroreception: An Overview. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_2

Download citation

Publish with us

Policies and ethics