Skip to main content

Bang-Bang Refocusing of a Qubit Exposed to Telegraph Noise

  • Chapter
Experimental Aspects of Quantum Computing

Abstract

Solid state qubits promise the great advantage of being naturally scalable to large quantum computer architectures, but they also possess the significant disadvantage of being intrinsically exposed to many sources of noise in the macroscopic solid-state environment. With suitably chosen systems such as superconductors, many of sources of noise can be suppressed. However, imprecision in nanofabrication will inevitably induce defects and disorder, such as charged impurities in the device material or substrate. Such defects generically produce telegraph noise and can hence be modelled as bistable fluctuators. We demonstrate the possibility of the active suppression of such telegraph noise by bang-bang control through an exhaustive study of a qubit coupled to a single bistable fluctuator. We use a stochastic Schrödinger equation, which is solved both numerically and analytically. The resulting dynamics can be visualized as diffusion of a spin vector on the Bloch sphere. We find that bang-bang control suppresses the effect of a bistable fluctuator by a factor roughly equalling the ratio of the bang-bang period and the typical fluctuator period. Therefore, we show the bang-bang protocol works essentially as a high pass filter on the spectrum of such telegraph noise sources. This suggests how the influence of 1/f-noise ubiquitous to the solid state world could be reduced, as it is typically generated by an ensemble of bistable fluctuators. Finally, we develop random walk models that estimate the level of noise suppression resulting from imperfect bang-bang operations, such as those that cannot be treated as δ-function impulses and those that have phase and axis errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  ADS  Google Scholar 

  2. D. Vion et al., Science 296, 886 (2002).

    Article  ADS  Google Scholar 

  3. I. Chioresco, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

    Article  ADS  Google Scholar 

  4. J. M. Martinis, S.W. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117907 (2002).

    Article  ADS  Google Scholar 

  5. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Article  ADS  Google Scholar 

  6. Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  7. C. van der Wal, F. Wilhelm, C. Harmans, and J. Mooij, Eur. Phys. J. B 31, 111 (2003).

    Article  ADS  Google Scholar 

  8. R. Wakai and D. van Harlingen, Phys. Rev. Lett. 58, 1687 (1987).

    Article  ADS  Google Scholar 

  9. N. M. Zimmermann, J. L. Cobb, and A. F. Clark, Phys. Rev. B 56, 7675 (1997).

    Article  ADS  Google Scholar 

  10. M. B. Weissmann, Rev. Mod. Phys. 60, 537 (1988).

    Article  ADS  Google Scholar 

  11. A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  12. Yu. Makhlin, G. Schön, and A. Shnirman, Phys. Scr. T 102, 147 (2002).

    ADS  Google Scholar 

  13. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2001).

    Google Scholar 

  14. H. Gassmann, F. Marquardt, and C. Bruder, Phys. Rev. E 66, 041111 (2002).

    Article  ADS  Google Scholar 

  15. N. Prokov’ef and P. Stamp, Rep. Prog. Phys. 63, 669 (2000).

    Article  ADS  Google Scholar 

  16. T. Ytakura and Y. Tokura, Dephasing due to background charge fluctuations, ISSP Int. Workshop “Quantum transport in mesoscopic scale and low dimensions”, (2003).

    Google Scholar 

  17. Y. M. Galperin, B. L. Altshuler, and D. V. Shantsev, Low-frequency noise as a source of dephasing of a qubit, Proc. of NATO/Euresco Conf. “Fundamental problems of mesoscopic physics: Interaction and decoherence”, Granada, Spain, (2003), NATO Science Series.

    Google Scholar 

  18. P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).

    Article  ADS  Google Scholar 

  19. J. M. Martinis et al., Phys. Rev. B 67, 094510 (2003).

    Article  ADS  Google Scholar 

  20. S. Lloyd and L. Viola, Phys. Rev. A 58, 2733 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Lloyd, E. Knill, and Viola, Phys. Rev. Lett. 82, 2417 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. S. Lloyd, E. Knill, and L. Viola, Phys. Rev. Lett. 83, 4888 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Arnold, stochastische Differentialgleichungen (Oldenbourg, München, 1973).

    MATH  Google Scholar 

  24. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1997).

    Google Scholar 

  25. H. Carr and E. Purcell, Phys. Rev. 94, 630 (1954).

    Article  ADS  Google Scholar 

  26. G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994).

    MATH  Google Scholar 

  27. H. Gutmann, F.K. Wilhelm, W.M. Kaminsky, and S. Lloyd, cond-mat/0308107.

    Google Scholar 

  28. K. Rabenstein, V. A. Sverdlov, and D. V. Averin, JETP Vol. 79 is. 12, 783

    Google Scholar 

  29. L. Faoro and L. Viola, quant-ph/0312159.

    Google Scholar 

  30. G. Falci, A. D’Arrigo, A. Mastellone, and E. Paladino, cond-mat/0312442.

    Google Scholar 

  31. E. Paladino, L. Faoro, and G. Falci, cond-mat/0312411.

    Google Scholar 

  32. E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev. Lett. 88, 228304 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gutmann, H., Wilhelm, F.K., Kaminsky, W.M., Lloyd, S. (2005). Bang-Bang Refocusing of a Qubit Exposed to Telegraph Noise. In: Everitt, H.O. (eds) Experimental Aspects of Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27732-3_16

Download citation

Publish with us

Policies and ethics