Skip to main content

The Calcium Channel and the Transmitter Release Site

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Summary

The Ca2+ channel exhibits multiple interactions at the presynaptic terminal. Not only is the channel critical for the action potential-gated influx of Ca2+ ions that leads to the activation of the transmitter release mechanism, a feed-forward pathway, but it is in itself modulated by a complex web of molecular interactions that involve both transmitter release site and non-release site proteins. Clearly, we do not yet nearly understand the full complexity of these molecular interactions since entirely new facets are being discovered apace. However, the picture is emerging of a highly structured and yet subtly designed molecular machine that is involved in complex forward and backward regulatory mechanisms in the control of transmitter release and, hence, of synaptic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Locke FS. Notiz über den Einfluss physiologischer Kochsalzlösung auf die elektrische Erregbarkeit von Muskel und Nerv. Pflugers Arch 1894; 8:166–167.

    Google Scholar 

  2. Katz B. The Release of Neural Transmitter Substances. 1969. Liverpool, Liverpool University Press. Ref Type: Serial (Book, Monograph)

    Google Scholar 

  3. Katz B, Miledi R. The timing of calcium action during neuromuscular transmission. J Physiol (Lond) 1967; 189:535–544.

    PubMed  CAS  Google Scholar 

  4. Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond (B) 1969; 183:421–425.

    Google Scholar 

  5. Llinas R, Blinks JR, Nicholson C. Calcium transient in presynaptic terminal of squid giant syn apse: detection with aequorin. Science 1972; 176(39):1127–1129.

    Article  PubMed  CAS  Google Scholar 

  6. Llinas RR, Steinberg IZ, Walton K. Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci USA 1976; 73:2918–2922.

    Article  PubMed  CAS  Google Scholar 

  7. Llinas RR, Steinberg IZ, Walton K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 1981; 33:323–351.

    PubMed  CAS  Google Scholar 

  8. Augustine GJ, Charlton MP, Smith SJ. Calcium action in synaptic transmitter release. Annu Rev Neurosci 1987; 10:633–693.

    Article  PubMed  CAS  Google Scholar 

  9. Hagiwara S, Ozawa S, Sand O. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 1975; 65(5):617–644.

    Article  PubMed  CAS  Google Scholar 

  10. Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurones. Nature (Lond) 1984; 310(5977):501–502.

    Article  PubMed  CAS  Google Scholar 

  11. Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different agonist sensitivity. Nature (Lond) 1985; 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  12. Fox AP, Nowycky MC, Tsien RW. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J Physiol (Lond) 1987; 394:149–172.

    PubMed  CAS  Google Scholar 

  13. Fox AP, Nowycky MC, Tsien RW. Single-channel recordings of three types of calcium channels in chick sensory neurons. J Physiol (Lond) 1987; 394:173–200.

    PubMed  CAS  Google Scholar 

  14. Hirning LD, Fox AP, McCleskey EW et al. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 1988; 239:57–60.

    Article  PubMed  CAS  Google Scholar 

  15. Llinás R, Sugimori M, Hillman DE et al. Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci 1992;15:351–355.

    Article  PubMed  Google Scholar 

  16. Mintz IM, Venema VJ, Swiderek KM et al. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature (Lond) 1992; 355:827–829.

    Article  PubMed  CAS  Google Scholar 

  17. Hauesler G. Differential effect of verapamil on excitation-secretion coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther 1972;180:672–682.

    Google Scholar 

  18. Nachshen DA, Blaustein MP. The effects of some organic calcium antagonists on calcium influx in presynaptic nerve terminals. Mol Pharmacol 1979; 16:576–586.

    PubMed  CAS  Google Scholar 

  19. Miller RJ. Multiple calcium channels and neuronal function. Science 1987; 235:46–52.

    Article  PubMed  CAS  Google Scholar 

  20. Miller RJ. Voltage-sensitive Ca2+ channels. J Biol Chem 1992; 267:1403–1406.

    PubMed  CAS  Google Scholar 

  21. Suszkiw JB, Murawsky MM, Shi M. Further characterization of phasic calcium influx in rat cerebrocortical synaptosomes: inferences regarding calcium channel type(s) in nerve endings. J Neurochem 1989; 52:1260–1269.

    Article  PubMed  CAS  Google Scholar 

  22. Stanley EF, Atrakchi AH. Calcium currents recorded from a vertebrate presynaptic nerve terminal are resistant to the dihydropyridine nifedipine. Proc Natl Acad Sci USA 1990; 87(24):9683–9687.

    Article  PubMed  CAS  Google Scholar 

  23. Charlton MP, Augustine GJ. Classification of presynaptic calcium channels at the squid giant synapse: neither T-, L-nor N-type. Brain Res 1990; 525:133–139.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts WM, Jacobs RA, Hudspeth AJ. The hair cell as a presynaptic terminal. Ann NY Acad Sci 1991; 635:221–233.

    Article  PubMed  CAS  Google Scholar 

  25. Nachman-Clewner M, St Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 1999; 415(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  26. Pan ZH. Voltage-activated Ca2+ channels and ionotropic GABA receptors localized at axon terminals of mammalian retinal bipolar cells. Vis Neurosci 2001; 18(2):279–288.

    Article  PubMed  CAS  Google Scholar 

  27. Heidelberger R, Matthews G. Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol (Lond) 1992; 447:235–256.

    PubMed  CAS  Google Scholar 

  28. Tachibana M, Okada T, Arimura T et al. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from retinal bipolar cells. Ann NY Acad Sci 1993; 707:359–361.

    Article  PubMed  CAS  Google Scholar 

  29. Kerr LM, Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature (Lond) 1984; 308:282–284.

    Article  PubMed  CAS  Google Scholar 

  30. Perney TM, Hirning LD, Leeman SE et al. Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci USA 1986; 83:6656–6659.

    Article  PubMed  CAS  Google Scholar 

  31. Yoshikami D, Bagaboldo Z, Olivera BM. The inhibitory effects of omega-conotoxins on Ca2+ channel and synapses. Ann N Y Acad Sci 1989; 560:230–248.

    Article  PubMed  CAS  Google Scholar 

  32. Uchitel OD, Protti DA, Sanchez V et al. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 1992; 89:3330–3333.

    Article  PubMed  CAS  Google Scholar 

  33. Fariñas I, Solsona C, Marsal J. Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes. Neuroscience 1992; 47:641–648.

    Article  PubMed  Google Scholar 

  34. Hillyard DR, Monje VD, Mintz IM et al. A new conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 1992; 9:69–77.

    Article  PubMed  CAS  Google Scholar 

  35. Turner TJ, Adams ME, Dunlap K. Calcium channels coupled to glutamate release identified by omega-Aga-IVA. Science 1992; 258:310–313.

    Article  PubMed  CAS  Google Scholar 

  36. Wu LG, Borst JG, Sakmann B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci USA 1998; 95(8):4720–4725.

    Article  PubMed  CAS  Google Scholar 

  37. Rhee JS, Ishibashi H, Akaike N. Calcium channels in the GABAergic presynaptic nerve terminals projecting to meynert neurons of the rat. J Neurochem 1999; 72(2):800–807.

    Article  PubMed  CAS  Google Scholar 

  38. Dunlap K, Luebke JI, Turner TJ. Identification of calcium channels that control neurosecretion. Science 1994; 266:828–830.

    PubMed  CAS  Google Scholar 

  39. Yawo H, Momiyama A. Re-evaluation of calcium currents in pre-and postsynaptic neurones of the chick ciliary ganglion. J Physiol (Lond) 1993; 460:153–172.

    PubMed  CAS  Google Scholar 

  40. Sivaramakrishnan S, Laurent G. Pharmacological characterization of presynaptic calcium currents underlying glutamatergic transmission in the avian auditory brainstem. J Neurosci 1995;15(10):6576–6585.

    PubMed  CAS  Google Scholar 

  41. Iwasaki S, Takahashi T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol (Lond) 1998; 509 (Pt 2):419–423.

    Article  PubMed  CAS  Google Scholar 

  42. Pan ZH, Hu HJ, Perring P et al. T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 2001; 32(1):89–98.

    Article  PubMed  CAS  Google Scholar 

  43. Stanley EF. Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 1993; 11:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  44. Dreyer F, Peper K, Akert K et al. Ultrastructure of the “active zone” in the frog neuromuscular junction. Brain Res 1973; 62(2):373–380.

    Article  PubMed  CAS  Google Scholar 

  45. Harlow M, Ress D, Koster A et al. Dissection of active zones at the neuromuscular junction by EM tomography. J Physiol Paris 1998; 92(2):75–78.

    Article  PubMed  CAS  Google Scholar 

  46. Heuser JE, Reese TS, Landis DMD. Functional changes in frog neuromuscular junctions studied with freeze fracture. J Neurocytol 1974; 3:109–131.

    Article  PubMed  CAS  Google Scholar 

  47. Pumplin DW, Reese TS, Llinas RR. Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci USA 1981; 78:7210–7213.

    Article  PubMed  CAS  Google Scholar 

  48. Yazejian B, Sun XP, Grinnell AD. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci 2000; 3(6):566–571.

    Article  PubMed  CAS  Google Scholar 

  49. Haydon PG, Henderson E, Stanley EF. Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron 1994; 13:1275–1280.

    Article  PubMed  CAS  Google Scholar 

  50. Llinas RR, Sugimori M, Simon SM. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci USA 1982; 79:2415–2419.

    Article  PubMed  CAS  Google Scholar 

  51. Jenkinson DH. The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J Physiol (Lond) 1957; 138:434–444.

    PubMed  CAS  Google Scholar 

  52. Dodge FA, Jr., Rahamimoff R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol (Lond) 1967; 193:419–432.

    PubMed  CAS  Google Scholar 

  53. Chad JE, Eckert R. Calcium domains associated with individual channels can account for anoma lous voltage relations of Ca2+-dependent responses. Biophys J 1984; 45:993–999.

    Article  PubMed  CAS  Google Scholar 

  54. Brochier G, Gulik-Krzywicki T, Lesbats B et al. Calcium-induced acetylcholine release and intramembrane particle occurrence in proteoliposomes equipped with mediatophore. Biol Cell 1992;74:225–230.

    Article  PubMed  CAS  Google Scholar 

  55. Breckenridge LJ, Aimers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Neuron 1987; 328:814–817.

    CAS  Google Scholar 

  56. Heuser JE, Reese TS. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 1981; 88(3):564–580.

    Article  PubMed  CAS  Google Scholar 

  57. Coorssen JR, Blank PS, Tahara M et al. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity J Cell Biol 1998; 143(7):1845–1857.

    Article  PubMed  CAS  Google Scholar 

  58. Jahn R, Hanson PI, Otto H et al. Botulinum and tetanus neurotoxins: Emerging tools for the study of membrane fusion. Cold Spring Harbor Symp Quant Biol 1995; 60:329–335.

    PubMed  CAS  Google Scholar 

  59. Mackler JM, Drummond JA, Loewen CA et al. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature (Lond) 2002; (6895):340–344.

    Article  CAS  Google Scholar 

  60. Robinson IM, Ranjan R, Schwarz TL. Synaptotagmins I and IV promote transmitter release inde pendently of Ca(2+) binding in the C(2)A domain Nature (Lond) 2002; 418(6895):336–340.

    Article  PubMed  CAS  Google Scholar 

  61. Geppert M, Goda Y, Hammer RE et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse.

    Google Scholar 

  62. Stanley EF. Decline in calcium cooperativity as the basis of facilitation at the squid giant synapse. J Neurosci 1986; 6:782–789.

    PubMed  CAS  Google Scholar 

  63. Liu Y, Stanley EF. Calcium binding sites of the transmitter release mechanism: Clues from short-term facilitation. J Physiol (Paris) 1995; 89:161–164.

    Google Scholar 

  64. Saisu H, Ibaraki K, Yamaguchi T et al. Monoclonal antibodies immunoprecipitating omegaconotoxin-sensitive calcium channel molecules recognize two novel proteins localized in the nervous system. Biochem Biophys Res Commun 1991; 181:59–66.

    Article  PubMed  CAS  Google Scholar 

  65. Yoshida A, Oho C, Omori A et al. HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J Biol Chem 1992; 267:24925–24928.

    PubMed  CAS  Google Scholar 

  66. Bennett MK, Calakos N, Scheller RH. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992; 257:255–259.

    Article  PubMed  CAS  Google Scholar 

  67. Martin-Moutot N, Charvin N, Leveque C et al. Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosornes. J Biol Chem 1996; 271(12):6567–6570.

    Article  PubMed  CAS  Google Scholar 

  68. O’Connor VM, Shamotienko O, Grishin E et al. On the structure of the’ synaptosecretosome’: Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex. FEBS Lett 1993; 326:255–260.

    Article  PubMed  CAS  Google Scholar 

  69. Sheng Z-H, Rettig J, Takahashi M, Catterall WA. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994; 13:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  70. Leveque C, Hoshino T, David P et al. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proc Natl Acad Sci USA 1992; 89:3625–3629.

    Article  PubMed  CAS  Google Scholar 

  71. Abe T, Saisu H, Horikawa HPM. Synaptocanalins (N-type Ca2+ channel-associated proteins) form a complex with SNAP-25 and synaptotagmin. Ann NY Acad Sci 1993; 707:373–375.

    Article  PubMed  CAS  Google Scholar 

  72. Coppola T, Magnin-Luthi S, Perret-Menoud V et al. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin.

    Google Scholar 

  73. Spafford JD, Munno DW, Van Nierop P et al. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J Biol Chem 2002.

    Google Scholar 

  74. Zinsmaier KE, Hofbauer A, Heimbeck G et al. A cysteine-string protein is expressed in retina and brain of Drosophila. J Neurogenet 1990; 7(1):15–29.

    PubMed  CAS  Google Scholar 

  75. Gundersen CB, Umbach JA. Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron 1992; 9:527–537.

    Article  PubMed  CAS  Google Scholar 

  76. Mastrogiacomo A, Parsons SM, Zampighi GA et al. Cysteine string proteins: A potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 1994; 263:981–982.

    Article  PubMed  CAS  Google Scholar 

  77. Braun JE, Scheller RH. Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology 1995; 34(11):1361–1369.

    Article  PubMed  CAS  Google Scholar 

  78. Buchner E, Gundersen CB. The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci 1997; 20(5):223–227.

    Article  PubMed  CAS  Google Scholar 

  79. Chamberlain LH, Burgoyne RD. Cysteine string protein functions directly in regulated exocytosis. Mol Biol Cell 1998; 9(8):2259–2267.

    PubMed  CAS  Google Scholar 

  80. Chen S, Zheng X, Schulze KL et al. Enhancement of presynaptic calcium current by cysteine string protein. J Physiol 2002; 538 (Pt 2):383–389.

    Article  PubMed  CAS  Google Scholar 

  81. Magga JM, Jarvis SE, Arnot MI et al. Cysteine string protein regulates G-protein modulation of N-type channels. Neuron 2000; 28(1):195–204.

    Article  PubMed  CAS  Google Scholar 

  82. Bezprozvanny I, Scheller RH, Tsien RW. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature(Lond) 1995; 378(6557):623–626.

    Article  PubMed  CAS  Google Scholar 

  83. Miralles F, Marsal J, Peres J et al. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: Effects on transmitter release. Bain Res 1996; 714(1–2):192–200.

    Article  CAS  Google Scholar 

  84. Wiser O, Tobi D, Trus M et al. Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 1997; 404(2–3):203–207.

    Article  PubMed  CAS  Google Scholar 

  85. Bezprozvanny I, Zhong P, Scheller RH et al. Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci USA 2000; 97(25):13943–13948.

    Article  PubMed  CAS  Google Scholar 

  86. Degtiar VE, Scheller RH, Tsien RW. Syntaxin modulation of slow inactivation of N-type calcium channels. J Neurosci 2000; 20(12):4355–4367.

    PubMed  CAS  Google Scholar 

  87. Atlas D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem 2001; 77(4):972–985.

    Article  PubMed  CAS  Google Scholar 

  88. Jarvis SE, Zamponi GW. Distinct molecular determinants govern syntaxin lA-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 2001; 21(9):2939–2948.

    PubMed  CAS  Google Scholar 

  89. Lu Q, AtKisson MS, Jarvis SE et al. Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J Neurosci 2001; 21(9):2949–2957.

    PubMed  CAS  Google Scholar 

  90. Tobi D, Wiser O, Trus M et al. N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. Receptors Channels 1998; 6(2):89–98.

    PubMed  CAS  Google Scholar 

  91. Mochida S, Saisu H, Kobayashi H et al. Impairment of syntaxin by botulinum neurotoxin C1 or antibodies inhibits acetylcholine release but not Ca2+ channel activity. Neuroscience 1995; 65:905–915.

    Article  PubMed  CAS  Google Scholar 

  92. Jarvis SE, Barr W, Feng ZP et al. Molecular Determinants of Syntaxin 1 Modulation of N-type Calcium Channels. J Biol Chem 2002; 277(46):44399–44407.

    Article  PubMed  CAS  Google Scholar 

  93. McMahon HT, Südhof TC. Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity a-SNAP binding site. J Biol Chem 1995; 270:2213–2217.

    Article  PubMed  CAS  Google Scholar 

  94. Marsal J, Ruiz-Montasell B, Blasi J et al. Block of transmitter release by botulinum C1 action on syntaxin at the squid giant synapse. Proc Natl Acad Sci USA 1997; 94(26):14871–14876.

    Article  PubMed  CAS  Google Scholar 

  95. Stanley EF, Mirotznik RR. Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature(Lond) 1997; 385(6614):340–343.

    Article  PubMed  CAS  Google Scholar 

  96. Bergsman JB, Tsien RW. Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin Cl. J Neurosci 2000; 20(12):4368–4378.

    PubMed  CAS  Google Scholar 

  97. Dunlap K, Fischbach GD. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol 1981; 317:519–535.

    PubMed  CAS  Google Scholar 

  98. Scott RH, Dolphin AC. Regulation of calcium currents by a GTP analogue: potentiation of (-)-baclofen-mediated inhibition. Neurosci Lett 1986; 69:59–64.

    Article  PubMed  CAS  Google Scholar 

  99. Hille B. Modulation of ion channels by G-protein coupled receptors. TINS 1994; 17:531–535.

    PubMed  CAS  Google Scholar 

  100. Ikeda SR, Dunlap K. Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 1999 1999; 131–151.

    Google Scholar 

  101. Mirotznik RR, Zheng X, Stanley EF. G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal. J Neurosci 2000; 20(20):7614–7621.

    PubMed  CAS  Google Scholar 

  102. Hille B, Beech DJ, Bernheim L et al. Multiple G-protein-coupled pathways inhibit N-type Ca2+ channels of neurons. Life Sci 1995; 56:989–992.

    Article  PubMed  CAS  Google Scholar 

  103. Park D, Dunlap K. Dynamic regulation of calcium influx by G-proteins, action potential wave form, and neuronal firing frequency. J Neurosci 1998; 6757–6766.

    Google Scholar 

  104. Kreitzer AC, Regehr WG. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 2002; 12(3):324–330.

    Article  PubMed  CAS  Google Scholar 

  105. Stotz SC, Zamponi GW. Structural determinants of fast inactivation of high voltage-activated Ca(2+) channels. Trends Neurosci 2001; 24(3):176–181.

    Article  PubMed  CAS  Google Scholar 

  106. Jarvis SE, Magga JM, Beedle AM et al. G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gbetagamma. J Biol Chem 2000; 275(9):6388–6394.

    Article  PubMed  CAS  Google Scholar 

  107. Barrett CF, Rittenhouse AR. Modulation of N-type calcium channel activity by G-proteins and protein kinase C. J Gen Physiol 2000; 115(3):277–286.

    Article  PubMed  CAS  Google Scholar 

  108. Garcia-Ferreiro RE, Hernandez-Ochoa EO, Garcia DE. Modulation of N-type Ca2+ channel current kinetics by PMA in rat sympathetic neurons.

    Google Scholar 

  109. Yokoyama CT, Sheng ZH, Catterall WA. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 1997; 17(18):6929–6938.

    PubMed  CAS  Google Scholar 

  110. Zamponi GW, Bourinet E, Nelson D et al. Crosstalk between G proteins and protein kinase C mediated by the calcium channel al subunit. Nature(Lond) 1997; 385:442–446.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Stanley, E.F., Chan, A.W. (2005). The Calcium Channel and the Transmitter Release Site. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_8

Download citation

Publish with us

Policies and ethics