Skip to main content

Post-Genomic Insights into T-Type Calcium Channel Functions in Neurons

  • Chapter
Voltage-Gated Calcium Channels

Abstract

Genomic mining, the process of sifting through billions of genomic and EST sequences of several different species has led to the molecular identification of a family of low voltage activating channels, more commonly referred to as T-type channels. Historically, these channels were initially identified through the use of the patch-damp technique on various neuronal preparations. They were characterized by their small conductance, rapid voltage-dependent inactivation, a small window current and slow deactivation kinetics and their remarkable property of being able to open at membrane potentials just above the resting membrane potential of neurons. This property would allow for the entry of Ca2+ without the initiation of an action potential triggered by the opening of sodium channels. Thus the activity of these channels would contribute to modifying membrane excitability, allowing Ca2+ signaling events to occur at subthreshold potentials, and potentially modulate waveform patterns.

Now, with the clones in hand, we have entered an exciting time where the molecular machinery can be dissected, modified and manipulated not only to investigate their biophysical properties, but to appreciate their role in a diverse range of cellular processes, find novel and useful therapeutic and pharmacological reagents, hunt down subunits and modifying proteins, study their localization and trafficking and incorporate these findings into the emerging field of systems biology where their roles can be placed in the context from a single neuron, to the organ, to the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Llinas R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 1981; 315:569–84.

    PubMed  CAS  Google Scholar 

  2. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 1981; 315:549–67.

    PubMed  CAS  Google Scholar 

  3. Cribbs LL, Lee JH, Yang J et al. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 1998; 83(1):103–9.

    PubMed  CAS  Google Scholar 

  4. Klugbauer N, Marais E, Lacinova L et al. A T-type calcium channel from mouse brain. Pflugers Arch 1999; 437(5):710–5.

    Article  PubMed  CAS  Google Scholar 

  5. Lee JH, Daud AN, Cribbs LL et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 1999; 19(6):1912–21.

    PubMed  CAS  Google Scholar 

  6. McRory JE, Santi CM, Hamming KS et al. Molecular and Functional Characterization of a Family of Rat Brain T-type Calcium Channels. J Biol Chem 2001; 276(6):3999–4011.

    Article  PubMed  CAS  Google Scholar 

  7. Monteil A, Chemin J, Bourinet E et al. Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem 2000; 275(9):6090–100.

    Article  PubMed  CAS  Google Scholar 

  8. Monteil A, Chemin J, Leuranguer V et al. Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem 2000; 275(22): 16530–5.

    Article  PubMed  CAS  Google Scholar 

  9. Perez-Reyes E. Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels. J Bioenerg Biomembr 1998; 30(4):313–8.

    Article  PubMed  CAS  Google Scholar 

  10. Williams ME, Washburn MS, Hans M et al. Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem 1999; 72(2):791–9.

    Article  PubMed  CAS  Google Scholar 

  11. Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996; 58:329–48.

    Article  PubMed  CAS  Google Scholar 

  12. Lee JH, Gomora JC, Cribbs LL et al. Nickel block of three cloned T-type calcium channels: Low concentrations selectively block alpha1H. Biophys J 1999; 77(6):3034–42.

    PubMed  CAS  Google Scholar 

  13. Frazier CJ, Serrano JR, George EG et al. Gating kinetics of the alpha1I T-type calcium channel. J Gen Physiol 2001; 118(5):457–70.

    Article  PubMed  CAS  Google Scholar 

  14. Mittman S, Guo J, Emerick MC et al. Structure and alternative splicing of the gene encoding alpha1I, a human brain T calcium channel alpha1 subunit. Neurosci Lett 1999; 269(3):121–4.

    Article  PubMed  CAS  Google Scholar 

  15. Mittman S, Guo J, Agnew WS. Structure and alternative splicing of the gene encoding alpha1G, a human brain T calcium channel alpha1 subunit. Neurosci Lett 1999; 274(3): 143–6.

    Article  PubMed  CAS  Google Scholar 

  16. Chemin J, Monteil A, Bourinet E et al. Alternatively spliced alpha(1G) (Ca2+(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 2001; 80(3): 1238–50.

    PubMed  CAS  Google Scholar 

  17. Murbartian J, Arias JM, Lee JH et al. Alternative splicing of the rat Ca2+(v)3.3 T-type calcium channel gene produces variants with distinct functional properties(1). FEBS Lett 2002; 528(1–3):272–8.

    Article  PubMed  CAS  Google Scholar 

  18. Gomora JC, Murbartian J, Arias JM et al. Cloning and expression of the human T-type channel Ca2+(v)3.3: Insights into prepulse facilitation. Biophys J 2002; 83(1):229–41.

    PubMed  CAS  Google Scholar 

  19. Chemin J, Monteil A, Dubel S et al. The alpha1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108-15 cells. Eur J Neurosci 2001; 14(10): 1678–86.

    Article  PubMed  CAS  Google Scholar 

  20. Beedle AM, Hamid J, Zamponi GW. Novel human a1G calcium channel splice variants. Biophysical J 2001; 80(1):120a.

    Google Scholar 

  21. Raghib A, Bertaso F, Davies A et al. Dominant-negative synthesis suppression of voltage-gated calcium channel Cav2.2 induced by truncated constructs. J Neurosci 2001; 21(21):8495–504.

    PubMed  CAS  Google Scholar 

  22. Ebihara T, Komiya Y, Izumi-Nakaseko H et al. Coexpression of a Ca2+(v)1.2 protein lacking an N-terminus and the first domain specifically suppresses L-type calcium channel activity. FEBS Lett 2002; 529(2–3):203–7.

    Article  PubMed  CAS  Google Scholar 

  23. Warre RC, McNaughton NC, Randall AD. Differential discrimination of fast and slow synaptic waveforms by two low-voltage-activated calcium channels. Neuroscience 2002; 110(2):375–88.

    Article  PubMed  CAS  Google Scholar 

  24. Kozlov AS, McKenna F, Lee JH et al. Distinct kinetics of cloned T-type Ca(2+) channels lead to differential Ca2+ entry and frequency-dependence during mock action potentials. Eur J Neurosci 1999; 11(12):4149–58.

    Article  PubMed  CAS  Google Scholar 

  25. Chcmin J, Monteil A, Perez-Reyes E et al. Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol 2002; 540(Pt 1):3–14

    Article  CAS  Google Scholar 

  26. Destexhe A, Contreras D, Steriade M et al. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 1996; 16(1):169–85.

    PubMed  CAS  Google Scholar 

  27. Destexhe A, Neubig M, Ulrich D et al. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998; 18(10):3574–88.

    PubMed  CAS  Google Scholar 

  28. Hugucnard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 1992; 68(4): 1373–83.

    Google Scholar 

  29. Chuang RS, Jaffe H, Cribbs L et al. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1998; 1(8):668–74.

    Article  PubMed  CAS  Google Scholar 

  30. Olamendi-Portugal T, Ines Garcia B, Lopez-Gonzalez I et al. Two new scorpion toxins that target voltage-gated Ca(2+) and Na(+) channels. Biochem Biophys Res Commun 2002; 299(4):562–8.

    Article  PubMed  CAS  Google Scholar 

  31. Sidach SS, Mintz IM. Kurtoxin, a gating modifier of neuronal high-and low-threshold ca channels. J Neurosci 2002; 22(6):2023–34.

    PubMed  CAS  Google Scholar 

  32. Chemin J, Monteil A, Briquaire C et al. Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 2000; 478(1–2): 166–72.

    Article  PubMed  CAS  Google Scholar 

  33. Todorovic SM, Lingle CJ. Pharmacological properties of T-type Ca(2+) current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol 1998; 79(1):240–52.

    PubMed  CAS  Google Scholar 

  34. Todorovic SM, Perez-Reyes E, Lingle CJ. Anticonvulsants but not general anesthetics have differential blocking effects on different T-type current variants. Mol Pharmacol 2000; 58(1):98–108.

    PubMed  CAS  Google Scholar 

  35. McNaughton NC, Hainsworth AH, Green PJ et al. Inhibition of recombinant low-voltage-activated Ca(2+) channels by the neuroprotective agent BW619C89 (Sipatrigine). Neuropharmacology 2000; 39(7): 1247–53.

    Article  PubMed  CAS  Google Scholar 

  36. Santi CM, Cayabyab FS, Sutton KG et al. Differential inhibition of T-type calcium channels by neuroleptics. J Neurosci 2002; 22(2):396–403.

    PubMed  CAS  Google Scholar 

  37. Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca(2+) channels by Ro 40-5967. Circ Res 1994; 75(1):144–8.

    PubMed  CAS  Google Scholar 

  38. Jimenez C, Bourinet E, Leuranguer V et al. Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels. Neuropharmacology 2000; 39(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  39. Martin RL, Lee JH, Cribbs LL et al. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther 2000; 295(1):302–8.

    PubMed  CAS  Google Scholar 

  40. Benardeau A, Weissenburger J, Hondeghem L et al. Effects of the T-type Ca(2+) channel blocker mibefradil on repolarization of guinea pig, rabbit, dog, monkey, and human cardiac tissue. J Pharmacol Exp Ther 2000; 292(2):561–75.

    PubMed  CAS  Google Scholar 

  41. Bezprozvanny I, Tsien RW. Voltage-dependent blockade of diverse types of voltage-gated Ca(2+) channels expressed in Xenopus oocytes by the Ca(2+) channel antagonist mibefradil (Ro 40-5967). Mol Pharmacol 1995; 48(3):540–9.

    PubMed  CAS  Google Scholar 

  42. Michels G, Matthes J, Handrock R et al. Single-channel pharmacology of mibefradil in human native T-type and recombinant Ca2+(v)3.2 calcium channels. Mol Pharmacol 2002; 61(3):682–94.

    Article  PubMed  CAS  Google Scholar 

  43. McDonough SI, Bean BP. Mibefradil inhibition of T-type calcium channels in cerebellar purkinje neurons. Mol Pharmacol 1998; 54(6):1080–7.

    PubMed  CAS  Google Scholar 

  44. Coulter DA, Huguenard JR, Prince DA. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: Calcium current reduction. Br J Pharmacol 1990; 100(4):800–6.

    PubMed  CAS  Google Scholar 

  45. Coulter DA, Huguenard JR, Prince DA. Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 1989; 98(1):74–8.

    Article  PubMed  CAS  Google Scholar 

  46. Leresche N, Parri HR, Erdemli G et al. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 1998; 18(13):4842–53.

    PubMed  CAS  Google Scholar 

  47. Gomora JC, Daud AN, Weiergraber M et al. Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol Pharmacol 2001; 60(5):1121–32.

    PubMed  CAS  Google Scholar 

  48. Todorovic S, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 2002; 951(2):336.

    Article  PubMed  CAS  Google Scholar 

  49. Dogrul A, Zagli U, Tulunay FC. The role of T-type calcium channels in morphine analgesia, development of antinociceptive tolerance and dependence to morphine, and morphine abstinence syndrome. Life Sci 2002;71(6):725–34.

    Article  PubMed  CAS  Google Scholar 

  50. Matthews EA, Dickenson AH. Effects of ethosuximide, a T-type Ca(2+) channel blocker, on dorsal horn neuronal responses in rats. Eur J Pharmacol 2001;415(2–3):141–9.

    Article  PubMed  CAS  Google Scholar 

  51. Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurones. Nature 1984;310(5977):501–2.

    Article  PubMed  CAS  Google Scholar 

  52. Bossu JL, Feltz A, Thomann JM. Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch 1985;403(4):360–8.

    Article  PubMed  CAS  Google Scholar 

  53. Kostyuk PG, Shuba Ya M, Savchenko AN. Three types of calcium channels in the membrane of mouse sensory neurons. Pflugers Arch 1988;411(6):661–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lambert RC, McKenna F, Maulet Y et al. Low-voltage-activated Ca(2+) currents are generated by members of the CavT subunit family (alpha 1G/H) in rat primary sensory neurons. J Neurosci 1998;18(21):8605–13.

    PubMed  CAS  Google Scholar 

  55. Talley EM, Cribbs LL, Lee JH et al. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999;19(6):1895–911.

    PubMed  CAS  Google Scholar 

  56. Todorovic SM, Jevtovic-Todorovic V, Meyenburg A et al. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 2001;31(1):75–85.

    Article  PubMed  CAS  Google Scholar 

  57. Todorovic SM, Jevtovic-Todorovic V, Mennerick S et al. Ca2+(v)3.2 channel is a molecular sub-strate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 2001;60(3):603–10.

    PubMed  CAS  Google Scholar 

  58. Abdulla FA, Smith PA. Nociceptin inhibits T-type Ca(2+) channel current in rat sensory neurons by a G-protein-independent mechanism. J Neurosci 1997;17(22):8721–8.

    PubMed  CAS  Google Scholar 

  59. Beedle AM, Poirot O, Barrere C et al. Inhibition of voltage gated calcium channels by nociceptine. In: 32nd Annual Meeting of the Society for Neuroscience; 2002. Orlando: 2002:341.5.

    Google Scholar 

  60. Zhang Y, Cribbs LL, Satin J. Arachidonic acid modulation of alpha1H, a cloned human T-type calcium channel. Am J Physiol Heart Circ Physiol 2000;278(1):H184–93.

    PubMed  CAS  Google Scholar 

  61. Chemin J, Monteil A, Perez-Reyes E et al. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 2001;20(24):7033–40.

    Article  PubMed  CAS  Google Scholar 

  62. Kim D, Song I, Keum S et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 2001;31(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  63. Talley EM, Solorzano G, Depaulis A et al. Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res Mol Brain Res 2000;75(1):159–65.

    Article  PubMed  CAS  Google Scholar 

  64. Tsakiridou E, Bertollini L, de Curtis M et al. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995;15(4):3110–7.

    PubMed  CAS  Google Scholar 

  65. Zhang Y, Mori M, Burgess DL et al. Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002;22(15):6362–71.

    PubMed  CAS  Google Scholar 

  66. Wellmer J, Su H, Beck H et al. Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus. Eur J Neurosci 2002;16(2):259–66.

    Article  PubMed  Google Scholar 

  67. Su H, Sochivko D, Becker A et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 2002;22(9):3645–55.

    PubMed  CAS  Google Scholar 

  68. Becker AJ, Su H, Sochivko D et al. Experience-dependent modification of neuronal firing mode by transcriptional regulation of a T-type Ca2+ channel. In: 31st Annual Meeting of the Society for Neuroscience; 2001. San Diego: 2001:707.10.

    Google Scholar 

  69. Williams S, Serafin M, Muhlethaler M et al. Distinct contributions of high-and low-voltage-activated calcium currents to after hyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig. J Neurosci 1997;17(19):7307–15.

    PubMed  CAS  Google Scholar 

  70. Wolfart J, Roeper J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 2002;22(9):3404–13.

    PubMed  CAS  Google Scholar 

  71. Chen C-C, Wang Z, Barresi R et al. Functional studies of Cav3.2 calcium channels using a gene-targeted strategy. Biophysical J 2002;82(1):572a.

    Article  Google Scholar 

  72. Chemin J, Nargeot J, Lory P. Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J Neurosci 2002;22(16):6856–62.

    PubMed  CAS  Google Scholar 

  73. Frischknecht F, Randall AD. Voltage-and ligand-gated ion channels in floor plate neuroepithelia of the rat. Neuroscience 1998;85(4):1135–49.

    Article  PubMed  CAS  Google Scholar 

  74. Oliet SH, Malenka RC, Nicoll RA. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 1997;18(6):969–82.

    Article  PubMed  CAS  Google Scholar 

  75. Nicoll RA, Oliet SH, Malenka RC. NMDA receptor-dependent and metabotropic glutamate receptor-dependent forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neurobiol Learn Mem 1998;70(1–2):62–72.

    Article  PubMed  CAS  Google Scholar 

  76. Wang Y, Rowan MJ, Anwyl R. Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca(2+) influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. J Neurophysiol 1997;77(2):812–25.

    PubMed  CAS  Google Scholar 

  77. Wasling P, Hanse E, Gustafsson B. Long-term depression in the developing hippocampus: low induction threshold and synapse nonspecificity. J Neurosci 2002;22(5):1823–30.

    PubMed  CAS  Google Scholar 

  78. Bao J, Li JJ, Perl ER. Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 1998;18(21):8740–50.

    PubMed  CAS  Google Scholar 

  79. Pan ZH, Hu HJ, Perring P et al. T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 2001;32(1):89–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Bourinet, E. et al. (2005). Post-Genomic Insights into T-Type Calcium Channel Functions in Neurons. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_21

Download citation

Publish with us

Policies and ethics