Skip to main content

The Run-Down Phenomenon of Ca2+ Channels

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kameyama A, Yazawa K, Kaibara M et al. Run-down of the cardiac Ca2+ channel: Characterization and restoration of channel activity by cytoplasmic factors. Pflugers Arch 1997; 433:547–556.

    Article  PubMed  CAS  Google Scholar 

  2. Kameyama M, Kameyama A, Takano E et al. Run-down of the cardiac L-type Ca2+ channel: Partial restoration of channel activity in cell-free patches by calpastatin. Pflugers Arch 1998b; 435:344–349.

    Article  PubMed  CAS  Google Scholar 

  3. Becq F. Ionic channel rundown in excised membrane patches. Biochim Biophys Acta 1996; 1286:53–63.

    PubMed  Google Scholar 

  4. Romanin C, Grosswagen P, Schindler H. Calpastatin and nucleotides stabilize cardiac calcium channel activity in excised patches. Pflugers Arch 1991; 418:86–92.

    Article  PubMed  CAS  Google Scholar 

  5. Seydl K, Karlsson JO, Dominik A et al. Action of calpastatin in prevention of cardiac L-type Ca2+ channel run-down cannot be mimicked by synthetic calpain inhibitors. Pflugers Arch 1995; 429:503–510.

    Article  PubMed  CAS  Google Scholar 

  6. Fenwick EM, Marty A, Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol 1982; 331:599–635.

    PubMed  CAS  Google Scholar 

  7. Nilius B, Hess P, Lansman JB et al. A novel type of cardiac calcium channel in ventricular cells. Nature 1985; 316:443–446.

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Reyes E, Cribbs LL, Daud A et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 1998; 391:896–900.

    Article  PubMed  CAS  Google Scholar 

  9. Hockberger PE, Nam SC. High-voltage-activated calcium current in developing neurons is insensitive to nifedipine. Pflugers Arch 1994; 426:402–411.

    Article  PubMed  CAS  Google Scholar 

  10. Tombaugh GC, Somjen GG. Differential sensitivity to intracellular pH among high-and low-thresh old Ca2+ currents in isolated rat CA1 neurons. J Neurophysiol 1997; 77:639–653.

    PubMed  CAS  Google Scholar 

  11. Martini M, Rossi ML, Rubbini G et al. Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 2000; 78:1240–1254.

    PubMed  CAS  Google Scholar 

  12. Morita H, Cousins H, Onoue H, et al. Predominant distribution of nifedipine-insensitive, high voltage-activated Ca2+ channels in the terminal mesenteric artery of guinea pig. Circ Res 1999; 85:596–605.

    PubMed  CAS  Google Scholar 

  13. Kameyama M, Kameyama A, Nakayama T et al. Tissue extract recovers cardiac calcium channels from ‘run-down’. Pflugers Arch 1988; 412:328–330.

    Article  PubMed  CAS  Google Scholar 

  14. Kameyama M, Kameyama A, Kaibara M et al. Mechanisms of rundown of cardiac calcium channels. In: Yamada K, Shibata S, eds. Recent Advances on Calcium Channels and Antagonists. New York: Pergamon Press, 1990:3–10.

    Google Scholar 

  15. Kostyuk PG. Intracellular perfusion of nerve cells and its effects on membrane currents. Physiol 1984; Rev 64:435–454.

    CAS  Google Scholar 

  16. Armstrong D, Eckert R Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci USA 1987; 84:2518–2522.

    Article  PubMed  CAS  Google Scholar 

  17. Ono K, Fozzard HA. Phosphorylation restores activity of L-type calcium channels after rundown in inside-out patches from rabbit cardiac cells. J Physiol 1992; 454:673–688.

    PubMed  CAS  Google Scholar 

  18. Costantin JL, Qin N, Waxham MN, et al. Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; Partial reversal by protein kinase A. Pflugers Arch 1999; 437:888–894.

    Article  PubMed  CAS  Google Scholar 

  19. Chad JE, Eckert R. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J Physiol 1986; 378:31–51.

    PubMed  CAS  Google Scholar 

  20. Belles B, Hescheler J, Trautwein W et al. A possible physiological role of the Ca-dependent protease calpain and its inhibitor calpastatin on the Ca current in guinea pig myocytes. Pflugers Arch 1988; 412:554–556.

    Article  PubMed  CAS  Google Scholar 

  21. Levitan IB. Phosphorylation of ion channels. J Membr Biol 1985; 87:177–190.

    Article  PubMed  CAS  Google Scholar 

  22. Yazawa K, Kameyama A, Yasui K et al. ATP regulates cardiac Ca2+ channel activity via a mechanism independent of protein phosphorylation. Pflugers Arch 1997; 433:557–562.

    Article  PubMed  CAS  Google Scholar 

  23. Elhamdani A, Bossu JL, Feltz A. ADP exerts a protective effect against rundown of the Ca2+ current in bovine chromaffin cells. Pflugers Arch 1995; 430:401–409.

    Article  PubMed  CAS  Google Scholar 

  24. De Jongh KS, Murphy BJ, Colvin AA et al. Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochemistry 1996; 35:10392–10402.

    Article  PubMed  Google Scholar 

  25. Leach RN, Brickley K, Norman RI. Cyclic AMP-dependent protein kinase phosphorylates residues in the C-terminal domain of the cardiac L-type calcium channel alpha1 subunit. Biochim Biophys Acta 1996; 1281:205–212.

    Article  PubMed  Google Scholar 

  26. Mitterdorfer J, Froschmayr M, Grabner M et al. Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel alpha 1 subunits. Biochemistry 1996; 35:9400–9406.

    Article  PubMed  CAS  Google Scholar 

  27. Perets T, Blumenstein Y, Shistik E et al. A potential site of functional modulation by protein kinase A in the cardiac Ca2+ channel alpha 1C subunit. FEBS Lett 1996; 384:189–192.

    Article  PubMed  CAS  Google Scholar 

  28. Sperelakis N. Regulation of ion channels by phosphorylation. In: Sperelakis N, ed. Cell Physiology Source Book. 2nd ed. San Diego: Academic Press, 1998:499–509.

    Google Scholar 

  29. Kameyama A, Hao LY, Takano E et al. Characterization and partial purification of the cytoplasmic factor that maintains cardiac Ca2+ channel activity. Pflugers Arch 1998a; 435:338–343.

    Article  PubMed  CAS  Google Scholar 

  30. Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 1991; 71:813–847.

    PubMed  CAS  Google Scholar 

  31. Hao LY, Kameyama A, Kameyama M. A cytoplasmic factor, calpastatin and ATP together reverse run-down of Ca2+ channel activity in guinea-pig heart. J Physiol 1999; 514 (Pt 3):687–699.

    Article  PubMed  CAS  Google Scholar 

  32. Ma H, Yang HQ, Takano E et al. Requirement of different subdomains of calpastatin for calpain inhibition and for binding to calmodulin-like domains. J Biochem (Tokyo) 1993; 113:591–599.

    PubMed  CAS  Google Scholar 

  33. Wang KK. Developing selective inhibitors of calpain. Trends Pharmacol Sci 1990; 11:139–142.

    Article  PubMed  CAS  Google Scholar 

  34. Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem Sci 1991;16:150–153.

    Article  PubMed  CAS  Google Scholar 

  35. Emori Y, Kawasaki H, Imajoh S et al. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc Natl Acad Sci USA 1987; 84:3590–3594.

    Article  PubMed  CAS  Google Scholar 

  36. Imajoh S, Kawasaki H, Emori Y et al. Calcium-activated neutral protease inhibitor from rabbit erythrocytes lacks the N-terminal region of the liver inhibitor but retains three inhibitory units. Biochem Biophys Res Commun 1987; 146:630–637.

    Article  PubMed  CAS  Google Scholar 

  37. Hao LY, Kameyama A, Kuroki S et al. Calpastatin domain L is involved in the regulation of L-type Ca2+ channels in guinea pig cardiac myocytes. Biochem Biophys Res Commun 2000; 279:756–761.

    Article  PubMed  CAS  Google Scholar 

  38. Walker D, De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels: Role in channel function. Trends Neurosci 1998; 21:148–154.

    Article  PubMed  CAS  Google Scholar 

  39. Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994;12:1183–1194.

    Article  PubMed  CAS  Google Scholar 

  40. Striessnig J. Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 1999; 9:242–269.

    Article  PubMed  CAS  Google Scholar 

  41. Soldatov NM. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc Natl Acad Sci USA 1992; 89:4628–4632.

    Article  PubMed  CAS  Google Scholar 

  42. Soldatov NM. Genomic structure of human L-type Ca2+ channel. Genomics 1994; 22:77–87.

    Article  PubMed  CAS  Google Scholar 

  43. Kepplinger KJ, Forstner G, Kahr H et al. Molecular determinant for run-down of L-type Ca2+ channels localized in the carboxyl terminus of the 1C subunit. J Physiol 2000; 529 (Pt 1):119–130.

    Article  PubMed  CAS  Google Scholar 

  44. Soldatov NM, Oz M, O’Brien KA et al. Molecular determinants of L-type Ca2+ channel inactivation. Segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40–42 of the human alpha1C subunit gene. J Biol Chem 1998; 273:957–963.

    Article  PubMed  CAS  Google Scholar 

  45. Soldatov NM, Zuhlke RD, Bouron A et al. Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40–42 in alpha 1C subunit in the kinetics and Ca2+ dependence of inactivation. J Biol Chem 1997; 272:3560–3566.

    Article  PubMed  CAS  Google Scholar 

  46. Gao T, Yatani A, Dell’Acqua ML et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19:185–196.

    Article  PubMed  CAS  Google Scholar 

  47. Lorca T, Galas S, Fesquet D et al. Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca2+-calmodulin dependent event. Embo J 1991; 10:2087–2093.

    PubMed  CAS  Google Scholar 

  48. Josephson IR, Varadi G. The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J 1996; 70:1285–1293.

    PubMed  CAS  Google Scholar 

  49. Schmid R, Seydl K, Baumgartner W et al. Trypsin increases availability and open probability of cardiac L-type Ca2+ channels without affecting inactivation induced by Ca2+. Biophys J 1995; 69:1847–1857.

    PubMed  CAS  Google Scholar 

  50. Peterson BZ, DeMaria CD, Adelman JP et al. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 1999; 22:549–558.

    Article  PubMed  CAS  Google Scholar 

  51. Qin N, Olcese R, Bransby M et al. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci USA 1999; 96:2435–2438.

    Article  PubMed  CAS  Google Scholar 

  52. Zuhlke RD, Pitt GS, Deisseroth K et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 399:159–162.

    Article  PubMed  CAS  Google Scholar 

  53. Takano E, Murachi T. Purification and some properties of human erythrocyte calpastatin. J Biochem (Tokyo) 1982; 92:2021–2028.

    PubMed  CAS  Google Scholar 

  54. Takano E, Kitahara A, Sasaki T et al. Two different molecular species of pig calpastatin. Structural and functional relationship between 107 kDa and 68 kDa molecules. Biochem J 1986; 235:97–102.

    PubMed  CAS  Google Scholar 

  55. Takano E, Maki M, Mori H et al. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry 1988; 27:1964–1972.

    Article  PubMed  CAS  Google Scholar 

  56. Maki M, Takano E, Mori H et al. Repetitive region of calpastatin is a functional unit of the proteinase inhibitor. Biochem Biophys Res Commun 1987; 143:300–308.

    Article  PubMed  CAS  Google Scholar 

  57. Yakel JL. Inactivation of the Ba2+ current in dissociated Helix neurons: Voltage dependence and the role of phosphorylation. Plugers Arch 1992; 420:470–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Kepplinger, K.J.F., Romanin, C. (2005). The Run-Down Phenomenon of Ca2+ Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_14

Download citation

Publish with us

Policies and ethics