Skip to main content

Substrate Oxidation by Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

9. Conclusions

Cytochrome P450 mechanisms continue to surprise and delight, although the field is growing to maturity and the completely unexpected is less frequently encountered. Experimentally, the past few years have seen major progress in characterizing the intermediates that are formed as molecular oxygen is activated to the final oxidizing species. All the intermediates, with the exception of the critical ferryl species, have now been directly observed by various spectroscopic and crystallographic methods. The ferric peroxo anion has been found to act as the oxidizing agent with a growing range of highly electrophilic substrates. In contrast, the proposed role for the ferric hydroperoxo complex as an electrophilic oxidizing agent remains a matter of debate, as the evidence advanced in support of the proposal is circumstantial and contradictory. Although the ferryl species remains elusive, it is increasingly clear that it plays the predominant role as the oxidizing agent in the P450 catalytic cycle. A second area that has recently received considerable attention is the mechanism of hydrocarbon hydroxylation, the key question being whether the radical rebound mechanism that has held sway for three decades is in fact valid. The contradictory results obtained with radical and cation probes, which have provided most of the new evidence, must be resolved by further experimentation in order for this quest ionto be settled. The development of a two-state model for the catalytic action of P450 enzymes may be one of the most important recent advances in the field, as it provides a ready explanation for a variety of otherwise contradictory data, some of which argues for concerted and some for nonconcerted oxidation mechanisms. No doubt, the next few years will uncover novel aspects of P450 function and will lead to deeper and more sophisticated understanding of the catalytic mechanisms of the amazing family of P450 enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dawson, J.H. and M. Sono (1987). Cytochrome P-450 and chloroperoxidase: Thiolate-ligated heme enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation. Chem. Rev. 87, 1255–1276.

    Article  CAS  Google Scholar 

  2. Shimizu, T., K. Hirano, M. Takahashi, M. Hatano, and Y. Fujii-Kuriyama (1988). Site-directed mutagenesis of cytochrome P-450d: Axial ligand and heme incorporation. Biochemistry 27, 4138–4141.

    Article  PubMed  CAS  Google Scholar 

  3. Unger, B. (1988). Ph.D. Thesis. University of Illinois Urbana, Champaign, IL.

    Google Scholar 

  4. Auclair, K., P. Moënne-Loccoz, and P.R. Ortiz de Montellano (2001). Roles of the proximal heme thiolate ligand in cytochrome P450cam. J. Am. Chem. Soc. 123, 4877–4885.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshioka, S., S. Takahashi, H. Hori, K. Ishimori, and I. Morishima (2001). Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450cam. Eur. J. Biochem. 268, 252–259.

    Article  PubMed  CAS  Google Scholar 

  6. Tani, F., M. Matsu-ura, S. Nakayama, M. Ichimura, N. Nakamura, and Y. Naruta (2001). Synthesis and characterization of alkanethiolate-coordinated iron porphyrins and their dioxygen adducts as models for the active center of cytochrome P450: Direct evidence for hydrogen bonding to bound dioxygen. J. Am. Chem. Soc. 123, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  7. Woggon, W.-D., H.-A. Wagennecht, and C. Claude (2001). Synthetic active site analogues of hemethiolate proteins. Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase. J. Inorg. Biochem. 83, 289–300.

    Article  PubMed  CAS  Google Scholar 

  8. Ogliaro, F., S. Cohen, M. Filatov, N. Harris, and S. Shaik (2000). The high-valent compound of cytochrome PA50: The nature of the Fe-S bond and the role of the thiolate ligand as an internal electron donor. Angew. Chem. Int. Ed. 39, 3851–3855.

    Article  CAS  Google Scholar 

  9. Green, M.T. (1999). Evidence for sulfur-based radicals in thiolate compound I intermediates. J. Am. Chem. Soc. 121, 7939–7940.

    Article  CAS  Google Scholar 

  10. Poulos, T.L., B.C. Finzel, and A.J. Howard (1987). High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 192, 687–700.

    Article  Google Scholar 

  11. Ravichandran, K.G., S.S. Boddupalli, C.A. Hasemann, J.A. Peterson, and J. Deisenhofer (1993). Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261, 731–736.

    Article  PubMed  CAS  Google Scholar 

  12. Li, H. and T.L. Poulos (1997). The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Biol. 4, 140–146.

    Article  PubMed  CAS  Google Scholar 

  13. Hasemann, C.A., K.G. Ravichandran, J.A. Peterson, and J. Deisenhofer (1994). Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J. Mol. Biol. 236, 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  14. Cupp-Vickery, J. and T.L. Poulos (1995). Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat. Struct. Biol. 2, 144–153.

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu, H., S.-Y. Park, Y. Gomi, H. Arakawa, H. Nakamura, S.-I. Adachi et al. (2000). Proton delivery in NO reduction by fungal nitric-oxide reductase. Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes. J. Biol. Chem. 275, 4816–4826.

    Article  PubMed  CAS  Google Scholar 

  16. Yano, J.K., L.S. Koo, D.J. Schuller, H. Li, P.R. Ortiz de Montellano, and T.L. Poulos (2000). Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J. Biol. Chem. 275, 31086–31092.

    Article  PubMed  CAS  Google Scholar 

  17. Podust, L.M., Y. Kim, M. Arase, B.A. Neely, B.J. Beck, H. Bach et al. (2003). The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems, J. Biol. Chem. 278, 12214–12221.

    Article  PubMed  CAS  Google Scholar 

  18. Podust, L.M., T.L. Poulos, and M.R. Waterman (2001). Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 98, 3068–3073.

    Article  PubMed  CAS  Google Scholar 

  19. Nagano, S., H. Li, H. Shimizu, C. Nishida, H. Ogura, P.R. Ortiz de Montellano et al. (2003). Crystal structure of epothilone-D bound, epothilone-B bound, and susbstrate-free forms of cytochrome P450epoK. J. Biol. Chem. 278, 44886–44893.

    Article  PubMed  CAS  Google Scholar 

  20. Williams, P.A., J. Cosme, V. Sridhar, E.F. Johnson, and D.E. McRee (2000). Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol. Cell. 5, 121–131.

    Article  PubMed  CAS  Google Scholar 

  21. Guengerich, F.P. and W.W. Johnson (1997). Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: Rapid reduction in the absence of substrate and variations among cytochrome P450 systems. Biochemistry 36, 14741–14750.

    Article  PubMed  CAS  Google Scholar 

  22. Imai, M., H. Shimada, Y. Watanabe, Y. Matsushima-Hibiya, R. Makino, H. Koga et al. (1989). Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: Possible role of the hydroxy amino acid in oxygen activation. Proc. Natl. Acad. Sci. USA 86, 7823–7827.

    Article  PubMed  CAS  Google Scholar 

  23. Martinis, S.A., W.M. Atkins, P.S. Stayton, and S.G. Sligar (1989). A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation. J. Am. Chem. Soc. 111, 9252–9253.

    Article  CAS  Google Scholar 

  24. Kimata, Y., H. Shimada, T. Hirose, and Y. Ishimura (1995). Role of Thr-252 in cytochrome P450cam: A study with unnatural amino acid mutagenesis. Biochem. Biophys. Res. Commun. 208, 96–102.

    Article  PubMed  CAS  Google Scholar 

  25. Ortiz de Montellano, P.R. (1995). Oxygen activation and reactivity. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry, 2nd edn. Plenum, New York, pp. 245–304.

    Google Scholar 

  26. Estabrook, R.W., C. Martin-Wixtrom, Y. Saeki, R. Renneberg, A. Hildebrandt, and J. Werringloer (1984). The peroxidatic function of liver microsomal cytochrome P450: Comparison of hydrogen peroxide and NADPH-catalyzed N-demethylation reactions. Xenobiotica 14, 87–104.

    PubMed  CAS  Google Scholar 

  27. Renneberg, R., J. Capdevila, N. Chacos, R.W. Estabrook, and R.A. Prough (1981). Hydrogen peroxide-supported oxidation of benzo[a]pyrene by rat liver microsomal fractions. Biochem. Pharmacol. 30, 843–848.

    Article  PubMed  CAS  Google Scholar 

  28. Fasco, M.J., L.J. Piper, and L.S. Kaminsky (1979). Cumene hydroperoxide-supported microsomal hydroxylations of warfarin—A probe of cytochrome P450 multiplicity and specificity. Biochem. Pharmacol. 28, 97–103.

    Article  PubMed  CAS  Google Scholar 

  29. Kelly, W.G. and A.H. Stolee (1978). Stabilization of placental aromatase by dithiothreitol in the presence of oxidizing agents. Steroids 31, 533–539.

    Article  PubMed  CAS  Google Scholar 

  30. Kupfer, R., S.Y. Liu, A.J. Allentoff, and J.A. Thompson (2001). Comparisons of hydroperoxide isomerase and monooxygenase activities of cytochrome P450 for conversions of allylic hydroperoxides and alcohols to epoxyalcohols and diols: Probing substrate reorientation in the active site. Biochemistry 40, 11490–11501.

    Article  PubMed  CAS  Google Scholar 

  31. He, K., L.M. Bornheim, A.M. Falick, D. Maltby, H. Yin, and M.A. Correia (1998). Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 37, 17448–17457.

    Article  PubMed  CAS  Google Scholar 

  32. Mueller, E.J., P.J. Loida, and S.G. Sligar (1995). Twenty-five years of P450cam research. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry, 2nd edn. Plenum, New York, pp. 83–124.

    Google Scholar 

  33. Loida, P.J. and S.G. Sligar (1993). Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation. Protein Eng. 6, 207–212.

    Article  PubMed  CAS  Google Scholar 

  34. Atkins, W.M. and S.G. Sligar (1987). Metabolic switching in cyctochrome P-450cam: Deuterium isotope effects on regiospecificity and the monooxygenase/oxidase ratio. J. Am. Chem. Soc. 109, 3754–3760.

    Article  CAS  Google Scholar 

  35. Fruetel, J.A., J.R. Collins, D.L. Camper, G.H. Loew, and P.R. Ortiz de Montellano (1992). Calculated and experimental absolute stereochemistry of the styrene and beta-methylstyrene epoxides formed by cytochrome P 450cam. J. Am. Chem. Soc. 114, 6987–6993.

    Article  CAS  Google Scholar 

  36. Perret, A. and D. Pompon (1998). Electron shuttle between membrane-bound cytochrome P450 3A4 and b 5 rules uncoupling mechanism. Biochemistry 37, 11412–11424.

    Article  PubMed  CAS  Google Scholar 

  37. Reed, J.R. and P.F. Hollenberg (2003). Comparison of substrate metabolism by cytochromes P450 2B1, 2B4, and 2B6: Relationship of heme spin state, catalysis, and the effects of cytochrome b5. J. Inorg. Biochem. 93, 152–160.

    Article  PubMed  CAS  Google Scholar 

  38. Schlichting, I., J. Berendzen, K. Chu, A.M. Stock, S.A. Maves, D.E. Benson et al. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  39. Davydov, R., T.M. Makris, V. Kofman, D.E. Werst, S.G. Sligar, and B.M. Hoffman (2001). Hydroxylation of camphor by reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc. 123, 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  40. Denisov, I.G., T.M. Makris, and S.G. Sligar (2001). Cryotrapped reaction intermediates of cytochrome P450 studied by radiolytic reduction with phosphorus-32. J. Biol. Chem. 276, 11648–11652.

    Article  PubMed  CAS  Google Scholar 

  41. Rahimtula, A.D., P.J. O’Brien, E.G. Hrycay, J.A. Peterson, and R.W. Estabrook (1974). Possible higher valence states of cytochrome P-450 during oxidative reactions. Biochem. Biophys. Res. Commun. 60, 695–702.

    Article  PubMed  CAS  Google Scholar 

  42. Blake, R.C. and M.J. Coon (1981). On the mechanism of action of cytochrome P-450. Role of peroxy spectral intermediates in substrate hydroxylation. J. Biol. Chem. 256, 5755–5763.

    PubMed  CAS  Google Scholar 

  43. Wagner, G.C., M.M. Palcic, and H.B. Dunford (1983). Absorption spectra of cytochrome P450CAM in the reaction with peroxy acids. FEBS Lett. 156, 244–248.

    Article  PubMed  CAS  Google Scholar 

  44. Egawa, T., H. Shimada, and Y. Ishimura (1994). Evidence for compound I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun. 201, 1464–1469.

    Article  PubMed  CAS  Google Scholar 

  45. Schünemann, V., C. Jung, A.X. Trautwein, D. Mandon, and R. Weiss (2000). Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid. FEBS Lett. 179, 149–154.

    Article  Google Scholar 

  46. Schünemann, V., C. Jung, J. Terner, A.X. Trautwein, and R. Weiss (2002). Spectroscopic studies of peroxyacetic acid reaction intermediates of cytochrome P450cam and chloroperoxidase. J. Inorg. Biochem. 91, 586–596.

    Article  PubMed  Google Scholar 

  47. Kellner, D.G., S.-C. Nung, K.E. Weiss, and S.G. Sligar (2002). Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. J. Biol. Chem. 277, 9641–9644.

    Article  PubMed  CAS  Google Scholar 

  48. Vaz, A.D.N., D.F. McGinnity, and M.J. Coon (1998). Epoxidation of olefins by cytochrome P450: Evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc. Natl. Acad. Sci. USA 95, 3555–3560.

    Article  PubMed  CAS  Google Scholar 

  49. Jin, S., T.M. Makris, T.A. Bryson, S.G. Sligar, and J.H. Dawson (2003). Epoxidation of olefins by hydroperoxo-ferric cytochrome P450. J. Am. Chem. Soc. 125, 3406–3407.

    Article  PubMed  CAS  Google Scholar 

  50. Ogliaro, F., S.P. de Visser, S. Cohen, P.K. Sharma, and S. Shaik (2002). Searching for the second oxidant in the catalytic cycle of cytochrome P450: A theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J. Am. Chem. Soc. 124, 2806–2817.

    Article  PubMed  CAS  Google Scholar 

  51. Guengerich, F.P., A.D.N. Vaz, G.N. Raner, S.J. Pernecky, and M.J. Coon (1997). Evidence for a role of a perferryl-oxygen complex, FeO3+, in the N-oxygenation of amines by cytochrome P450 enzymes. Mol. Pharmacol. 51, 147–151.

    PubMed  CAS  Google Scholar 

  52. Vatsis, K.P. and M.J. Coon (2002). Ipso-substitution by cytochrome P450 with conversion of p-hydroxybenzene derivatives to hydroquinone: Evidence for hydroperoxo-iron as the active oxygen species. Arch. Biochem. Biophys. 397, 119–129.

    Article  PubMed  CAS  Google Scholar 

  53. Toy, P.H., B. Dhanabalasingam, M. Newcomb, I.H. Hanna, and P.F. Hollenberg (1997). A substituted hypersensitive radical probe for enzyme-catalyzed hydroxylations: Synthesis of racemic and enantiomerically enriched forms and application in a cytochrome P450-catalyzed oxidation. J. Org. Chem. 62, 9114–9122.

    Article  CAS  Google Scholar 

  54. Toy, P.H., M. Newcomb, and P.F. Hollenberg (1998). Hypersensitive mechanistic probe studies of cytochrome P450-catalyzed hydroxylation reactions. Implications for the cationic pathway. J. Am. Chem. Soc. 120, 7719–7729.

    Article  CAS  Google Scholar 

  55. Toy, P.H., M. Newcomb, M.J. Coon, and A.D.N. Vaz (1998). Two distinct electrophilic oxidants effect hydroxylation in cytochrome P-450-catalyzed reactions. J. Am. Chem. Soc. 120, 9718–9719.

    Article  CAS  Google Scholar 

  56. Schöneboom, J.C., H. Lin, N. Reuter, W. Thiel, S. Cohen, F. Ogliaro et al. (2002). The elusive oxidant species of cytochrome P450 enzymes: Characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J. Am. Chem. Soc. 124, 8142–8151.

    Article  PubMed  CAS  Google Scholar 

  57. Ogliaro, F., S.P. de Visser, S. Cohen, P.K. Sharma, and S. Shaik (2002). Searching for the second oxidant in the catalytic cycle of cytochrome P450: A theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J. Am. Chem. Soc. 124, 2806–2817.

    Article  PubMed  CAS  Google Scholar 

  58. Kamachi, T., Y. Shiota, T. Ohta, and K. Yoshizawa (2003). Does the hydroperoxo species of cytochrome P450 participate in olefin epoxidation with the main oxidant, Compound I: Criticism from density functional theory calculations. Bull. Chem. Soc. Jpn. 76, 721–732.

    Article  CAS  Google Scholar 

  59. Groves, J.T., G.A. McClusky, R.E. White, and M.J. Coon (1978). Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem. Biophys. Res. Commun. 81, 154–160.

    Article  PubMed  CAS  Google Scholar 

  60. Ogliaro, F., S.P. de Visser, S. Cohen, J. Kaneti, and S. Shaik (2001). The experimentally elusive oxidant of cytochrome P450: A theoretical “trapping” defining more closely the “real” species. ChemBiochem. 11, 848–851.

    Article  Google Scholar 

  61. Ogliaro, F., N. Harris, S. Cohen, M. Filatov, S.P. de Visser, and S. Shaik (2000). A model “rebound” mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways and their reactivity patterns. J. Am. Chem. Soc. 122, 8977–8989.

    Article  CAS  Google Scholar 

  62. Foster, A.B. (1985). Deuterium isotope effects in the metabolism of drugs and xenobiotics: Implications for drug design. Adv. Drug Res. 14, 2–40.

    Google Scholar 

  63. Hjelmeland, L.M., L. Aronow, and J.R. Trudell (1977). Intramolecular determination of primary kinetic isotope effects in hydroxylations catalyzed by cytochrome P-450. Biochem. Biophys. Res. Commun. 76, 541–549.

    Article  CAS  Google Scholar 

  64. White, R.E., J.P. Miller, L.V. Favreau, and A. Bhattacharyaa (1986). Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. J. Am. Chem. Soc. 108, 6024–6031.

    Article  CAS  Google Scholar 

  65. Gelb, M.H., D.C. Heimbrook, P. Malkonen, and S.G. Sligar (1982). Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system. Biochemistry 21, 370–377.

    Article  PubMed  CAS  Google Scholar 

  66. Groves, J.T. and D.V. Subramanian (1984). Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for allylic rearrangement. J. Am. Chem. Soc. 106, 2177–2181.

    Article  CAS  Google Scholar 

  67. Oliw, E.H., I.D. Brodowsky, L. Hörnsten, and M. Hamberg (1993). Bis-allylic hydroxylation of polyunsaturated fatty acids by hepatic monooxygenases and its relation to the enzymatic and nonenzymatic formation of conjugated hydroxy fatty acids. Arch. Biochem. Biophys. 300, 434–439.

    Article  PubMed  CAS  Google Scholar 

  68. Tanaka, K., N. Kurihara, and M. Nakajima (1979). Oxidative metabolism of tetrachlorocyclohexenes, pentachlorocyclohexenes, and hexachlorocyclohexenes with microsomes from rat liver and house fly abdomen. Pestic. Biochem. Physiol. 10, 79–95.

    Article  CAS  Google Scholar 

  69. Stanjek, V., M. Miksch, P. Lueer, U. Matern, and W. Boland (1999). Biosynthesis of psoralen: Mechanism of a cytochrome P450 catalyzed oxidative bond cleavage. Angew. Chem. Int. Ed. 38, 400–402.

    Article  CAS  Google Scholar 

  70. Ortiz de Montellano, P.R. and R.A. Stearns (1987). Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes. J. Am. Chem. Soc. 109, 3415–3420.

    Article  CAS  Google Scholar 

  71. White, R.E., J.T. Groves, and G.A. McClusky (1979). Electronic and steric factors in regio-selective hydroxylation catalyzed by purified cytochrome P-450. Acta Biol. Med. Ger. 38, 475–482.

    PubMed  CAS  Google Scholar 

  72. Sligar. S.G., M.H. Gelb, and D.C. Heimbrook (1984). Bio-organic chemistry and cytochrome P-450-dependent catalysis. Xenobiotica 14, 63–86.

    PubMed  CAS  Google Scholar 

  73. Houghton, J.D., S.E. Beddows, K.E. Suckling, L. Brown, and C.J. Suckling (1986). 5α,6α-Methanocholestan-3β-ol as a probe of the mechanism of action of cholesterol 7α-hydroxylase. Tetrahedron Lett. 27, 4655–4658.

    Article  CAS  Google Scholar 

  74. Bowry, V.W. and K.U. Ingold (1991). A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound. J. Am. Chem. Soc. 113, 5699–5707.

    Article  CAS  Google Scholar 

  75. Newcomb, M. and P.H. Toy (2000). Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions. Acc. Chem. Res. 33, 449–455.

    Article  PubMed  CAS  Google Scholar 

  76. Atkinson, J.K. and K.U. Ingold (1993). Cytochrome P450 hydroxylation of hydrocarbons: Variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes. Biochemistry 32, 9209–9214.

    Article  PubMed  CAS  Google Scholar 

  77. Atkinson, J.K., P.F. Hollenberg, K.U. Ingold, C.C. Johnson, M.-H. Le Tadic, M. Newcomb et al. (1994). Cytochrome P450-catalyzed hydroxylation of hydrocarbons: Kinetic deuterium isotope effects for the hydroxylation of an ultrafast radical clock. Biochemistry 33, 10630–10637.

    Article  PubMed  CAS  Google Scholar 

  78. Newcomb, M., M.-H. Le Tadic, D.A. Putt, and P.F. Hollenberg (1995). An incredibly fast apparent oxygen rebound rate constant for hydrocarbon hydroxylation by cytochrome P-450 enzymes. J. Am. Chem. Soc. 117, 3312–3313.

    Article  CAS  Google Scholar 

  79. Newcomb, M., M.-H. Le Tadic-Biadatti, D.L. Chestney, E.S. Roberts, and P.F. Hollenberg (1995). A nonsynchronous concerted mechanism for cytochrome P450 catalyzed hydroxylation. J. Am. Chem. Soc. 117, 12085–12091.

    Article  CAS  Google Scholar 

  80. Auclair, K., Z. Hu, D.M. Little, P.R. Ortiz de Montellano, and J.T. Groves (2002). Revisiting the mechanism of P450 enzymes using the radical clocks norcarane and spiro[2,5]bicyclooctane. J. Am. Chem Soc. 124, 6020–6027.

    Article  PubMed  CAS  Google Scholar 

  81. Newcomb, M., R. Shen, Y. Lu, M.J. Coon, P.F. Hollenberg, D.A. Kopp et al. (2002). Evaluation of norcarane as a probe for radicals in cytochrome P450-and soluble methane monooxygenase-catalyzed hydroxylation reactions. J. Am. Chem. Soc. 124, 6879–6886.

    Article  PubMed  CAS  Google Scholar 

  82. Hino, F. and D. Dolphin (1999). The biomimetic oxidation of dieldrin using polyhalogenated metalloporphyrins. J. Chem. Soc. Chem. Commun. 629–630.

    Google Scholar 

  83. Shaik, S., M. Filatov, D. Schröder, and H. Schwarz (1998). Electronic structure makes a difference: Cytochrome P450 mediated hydroxylations of hydrocarbons as a two-state reactivity paradigm. Chem. Eur. 4, 193–199.

    Article  CAS  Google Scholar 

  84. Harris, N., S. Cohen, M. Filatov, and F. Ogliaro (2000). Two-state reactivity in the rebound step of alkane hydroxylation by cytochrome P-450: Origins of free radicals with finite lifetimes. Angew. Chem. Int. Ed. 39, 2003–2007.

    Article  CAS  Google Scholar 

  85. Schröder, D., S. Shaik, and H. Schwarz (2000). Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145.

    Article  PubMed  CAS  Google Scholar 

  86. Ogliaro, F., S.P. de Visser, J.T. Groves, and S. Shaik (2001). Chameleon states: High-valent metal-oxo species of cytochrome P450 and its ruthenium analogue. Angew. Chem. Int. Ed. 40, 2874–2878.

    Article  CAS  Google Scholar 

  87. Manchester, J.I., J.P. Dinnocenzo, L. Higgins, and J.P. Jones (1997). A new mechanistic probe for cytochrome P450: An application of isotope effect profiles. J. Am. Chem. Soc. 119, 5069–5070.

    Article  CAS  Google Scholar 

  88. Choi, S.-Y., P.E. Eaton, P.F. Hollenberg, K.E. Liiu, S.J. Lippard, M. Newcomb et al. (1996). Regiochemical variations in reactions of methylcubane with tert-butoxyl radical, cytochrome P-450 enzymes and a methane monooxygenase system. J. Am. Chem. Soc. 118, 6547–6555.

    Article  CAS  Google Scholar 

  89. Newcomb, M., R. Shen, S.-Y. Choi, P.H. Toy, P.F. Hollenberg, A.D.N. Vaz et al. (2000). Cytochrome P450-catalyzed hydroxylation of mechanistic probes that distinguish between radicals and cations. Evidence for cationic but not for radical intermediates. J. Am. Chem. Soc. 122, 2677–2686.

    Article  CAS  Google Scholar 

  90. Stearns, R.A. and P.R. Ortiz de Montellano (1985). Cytochrome P-450 catalyzed oxidation of quadricyclane. Evidence for a radical cation intermediate. J. Am. Chem. Soc. 107, 4081–4082.

    Article  CAS  Google Scholar 

  91. Ortiz de Montellano, P.R., H.S. Beilan, and K.L. Kunze (1981). N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J. Biol. Chem. 256, 6708–6713.

    PubMed  CAS  Google Scholar 

  92. Augusto, O., H.S. Beilan, and P.R. Ortiz de Montellano (1982). The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257, 11288–11295.

    PubMed  CAS  Google Scholar 

  93. Kennedy, C.H. and R.P. Mason (1990). A reexamination of the cytochrome P-450-catalyzed free radical production from a dihydropyridine. Evidence of trace transition metal catalysis. J. Biol. Chem. 265, 11425–11428.

    PubMed  CAS  Google Scholar 

  94. Guengerich, F.P., C.-H. Yun, and T.L. Macdonald (1996). Evidence for a 1-electron oxidation mechanism in N-dealkylation of N,N-dialkylanilines by cytochrome P450 2B1. Kinetic hydrogen isotope effects, linear free energy relationships, comparisons with horseradish peroxidase and studies with oxygen surrogates. J. Biol. Chem. 271, 27321–27329.

    Article  PubMed  CAS  Google Scholar 

  95. Miwa, G.T., J.S. Walsh, and A.Y.H. Lu (1984). Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions. The oxidative O-dealkylation of 7-ethoxycoumarin. J. Biol. Chem. 259, 3000–3004.

    PubMed  CAS  Google Scholar 

  96. Baciocchi, E., O. Lanzalunga, A. Lapi, and L. Manduchi (1998). Kinetic deuterium isotope effect profiles and substituent effects in the oxidative N-demethylation of N,N-dimethylanilines catalyzed by tetrakis(pentafluorophenyl)porphyrin iron(III) chloride. J. Am. Chem. Soc. 120, 5783–5787.

    Article  CAS  Google Scholar 

  97. Galliani, G., M. Nali, B. Rindone, S. Tollari, M. Rocchetti, and M. Salmona (1986). The rate of N-demethylation of N,N-dimethylanilines and N-methylanilines by rat-liver microsomes is related to their first ionization potential, their lipophilicity and to a steric bulk factor. Xenobiotica 16, 511–517.

    PubMed  CAS  Google Scholar 

  98. Macdonald, T.L., W.G. Gutheim, R.B. Martin, and F.P. Guengerich (1989). Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 28, 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  99. Goto, Y., Y. Watanabe, S. Fukuzumi, J.P. Jones, and J.P. Dinnocenzo (1998). Mechanisms of N-demethylations catalyzed by high-valent species of heme enzymes: Novel use of isotope effects and direct observation of intermediates. J. Am. Chem. Soc. 120, 10762–10763.

    Article  CAS  Google Scholar 

  100. Miwa, G.T., J.S. Walsh, G.L. Kedderis, and P.F. Hollenberg (1983). The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450-and peroxidase-catalyzed N-demethylation reactions. J. Biol. Chem. 258, 14445–14449.

    PubMed  CAS  Google Scholar 

  101. Hall, L.R. and R.P. Hanzlik (1991). N-dealkylation of tertiary amides by cytochrome P-450. Xenobiotica 21, 1127–1138.

    PubMed  CAS  Google Scholar 

  102. Okazaki, O. and F.P. Guengerich (1993). Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. Differences in rates of deprotonation of aminium radicals as an explanation for high kinetic hydrogen isotope effects observed with peroxidases. J. Biol. Chem. 268, 1546–1552.

    PubMed  CAS  Google Scholar 

  103. Nelsen, S.F. and J.T. Ippoliti (1986). The deprotonation of trialkylamine cation radicals by amines. J. Am. Chem. Soc. 108, 4879–4881.

    Article  CAS  Google Scholar 

  104. Karki, S.B., J.P. Dinnocenzo, J.P. Jones, and K.R. Korzekwa (1995). Mechanism of oxidative amine dealkylation of substituted N,N-dimethylanilines by cytochrome P-450: Application of isotope effect profiles. J. Am. Chem. Soc. 117, 3657–3664.

    Article  CAS  Google Scholar 

  105. Tanko, J.M., R. Friedline, N.K. Suleman, and N. Castagnoli (2001). tert-Butoxyl as a model for radicals in biological systems: Caveat emptor. J. Am. Chem. Soc. 123, 5808–5809.

    Article  PubMed  CAS  Google Scholar 

  106. Macdonald, T.L., K. Zirvi, L.T. Burka, P. Peyman, and F.P. Guengerich (1982). Mechanism of cytochrome P-450 inhibition by cyclopropylamines. J. Am. Chem. Soc. 104, 2050–2052.

    Article  CAS  Google Scholar 

  107. Hanzlik, R.P. and R.H. Tullman (1982). Suicidal inactivation of cytochrome P-450 by cyclopropylamines. Evidence for cation-radical intermediates. J. Am. Chem. Soc. 104, 2048–2050.

    Article  CAS  Google Scholar 

  108. Guengerich, F.P., R.J. Willard, J.P. Shea, L.E. Richards, and T.L. Macdonald (1984). Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened products. J. Am. Chem. Soc. 106, 6446–6447.

    Article  CAS  Google Scholar 

  109. Shaffer, C.L., M.D. Morton, and R.P. Hanzlik (2001). N-Dealkylation of an N-cyclopropylamine by horseradish peroxidase. Fate of the cyclopropyl group. J. Am. Chem. Soc. 123, 8502–8508.

    Article  PubMed  CAS  Google Scholar 

  110. Shaffer, C.L., S. Harriman, Y.M. Koen, and R.P. Hanzlik (2002). Formation of cyclopropanone during cytochrome P450-catalyzed N-dealkylation of a cyclopropylamine. J. Am. Chem. Soc. 124, 8268–8274.

    Article  PubMed  CAS  Google Scholar 

  111. Kuttab, S., J. Shang, and N. Castagnoli (2001). Rat liver microsomal enzyme catalyzed oxidation of 4-phenyl-trans-1-(2-phenylcyclopropyl)-1,2,3,6-tetrahydropyridine. Bioorg. Med. Chem. 9, 1685–1689.

    Article  PubMed  CAS  Google Scholar 

  112. Hall, L.R. and R.P. Hanzlik (1989). Kinetic deuterium isotope effects on the N-demethylation of tertiary amides by cytochrome P-450. J. Biol. Chem. 264, 12349–12355.

    Google Scholar 

  113. Constantino, L., E. Rosa, and J. Iley (1992). The microsomal demethylation of N,N-dimethylbenzamides. Substituent and kinetic deuterium isotope effects. Biochem. Pharmacol. 44, 651–658.

    Article  PubMed  CAS  Google Scholar 

  114. Iley, J., L. Constantino, F. Norberto, and E. Rosa (1990). Oxidation of the methyl groups of N,N-dimethylbenzamides by a cytochrome P450 mono-oxygenase model system. Tetrahedron Lett. 31, 4921–4922.

    Article  CAS  Google Scholar 

  115. Hall, L.R., R.T. Iwamoto, and R.P. Hanzlik (1989). Electrochemical models for cytochrome P-450. N-Demethylation of tertiary amides by anodic oxidation. J. Org. Chem. 54, 2446–2451.

    Article  CAS  Google Scholar 

  116. Hlavica, P. and M. Lehnerer (1995). Some aspects of the role of cytochrome P-450 isozymes in the N-oxidative transformation of secondary and tertiary amine compounds. J. Biochem. Toxicol. 10, 275–285.

    Article  PubMed  CAS  Google Scholar 

  117. Seto, Y. and F.P. Guengerich (1993). Partitioning between N-dealkylation and N-oxygenation in the oxidation of N,N-dialkylarylamines catalyzed by cytochrome P450 2B1. J. Biol. Chem. 268, 9986–9997.

    PubMed  CAS  Google Scholar 

  118. Burstyn, J.N., M. Iskandar, J.F. Brady, J.M. Fukuto, and A.K. Cho (1991). Comparative studies of N-hydroxylation and N-demethylation by microsomal cytochrome P-450. Chem. Res. Toxicol. 4, 70–76.

    Article  PubMed  CAS  Google Scholar 

  119. Hlavica, P. and U. Künzel-Mulas (1993). Metabolic N-oxide formation by rabbit-liver microsomal cytochrome P-4502B4: Involvement of superoxide in the NADPH-dependent N-oxygenation of N,N-dimethylaniline. Biochim. Biophys. Acta 1158, 83–90.

    PubMed  CAS  Google Scholar 

  120. Watanabe, Y., T. Numata, T. Iyanagi, and S. Oae (1981). Enzymatic oxidation of alkyl sulfides by cytochrome P450 and hydroxyl radical. Bull. Chem. Soc. Jpn. 54, 1163–1170.

    Article  CAS  Google Scholar 

  121. Watanabe, Y., T. Iyanagi, and S. Oae (1980). Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P450. Tetrahedron Lett. 21, 3685–3688.

    Article  CAS  Google Scholar 

  122. Watanabe, Y., T. Iyanagi, and S. Oae (1982). One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P450. Tetrahedron Lett. 23, 533–536.

    Article  CAS  Google Scholar 

  123. Alvarez, J.C. and P.R. Ortiz de Montellano (1992). Thianthrene 5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species. Biochemistry 31, 8315–8322.

    Article  PubMed  CAS  Google Scholar 

  124. Bacciochi, E., O. Lanzalunga, and B. Pirozzi (1997). Oxidations of benzyl and phenethyl phenyl sulfides. Implications for the mechanism of the microsomal and biomimetic oxidation of sulfides. Tetrahedron 53, 12287–12298.

    Article  Google Scholar 

  125. Baciocchi, E., O. Lanzalunga, S. Malandrucco, M. Iolel, and S. Steenken (1996). Oxidation of sulfides by peroxidases. Involvement of radical cations and the rate of the oxygen rebound step. J. Am. Chem. Soc. 118, 8973–8974.

    Article  CAS  Google Scholar 

  126. Holland, H.L., M.J. Chernishenko, M. Conn, A. Munoz, T.S. Manoharan, and M.A. Zawadski (1990). Enzymic hydroxylation and sulfoxidation of cyclopropyl compounds by fungal biotransformation. Can. J. Chem. 68, 696–700.

    Article  CAS  Google Scholar 

  127. Watabe, T. and K. Akamatsu (1974). Microsomal epoxidation of cis-stilbene: Decrease in epoxidase activity related to lipid peroxidation. Biochem. Pharmacol. 23, 1079–1085.

    Article  PubMed  CAS  Google Scholar 

  128. Watabe, T., Y. Ueno, and J. Imazumi (1971). Conversion of oleic acid into threo-dihydroxy-stearic acid by rat liver microsomes. Biochem. Pharmacol. 20, 912–913.

    Article  PubMed  CAS  Google Scholar 

  129. Ortiz de Montellano, P.R., B.L.K. Mangold, C. Wheeler, K.L. Kunze, and N.O. Reich (1983). Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation. J. Biol. Chem. 258, 4208–4213.

    PubMed  CAS  Google Scholar 

  130. Hanzlik, R.P. and G.O. Shearer (1978). Secondary deuterium isotope effects on olefin epoxidation by cytochrome P450. Biochem. Pharmacol. 27, 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  131. Hanzlik, R.P. and G.O. Shearer (1975). Transition state structure for peracid epoxidation: Secondary deuterium isotope effects. J. Am. Chem. Soc. 97, 5231–5233.

    Article  CAS  Google Scholar 

  132. Ortiz de Montellano, P.R. and K.L. Kunze (1981). Shift of the acetylenic hydrogen during chemical and enzymatic oxidation of the biphenylacetylene triple bond. Arch. Biochem. Biophys. 209, 710–712.

    Article  PubMed  CAS  Google Scholar 

  133. McMahon, R.E., J.C. Turner, G.W. Whitaker, and H.R. Sullivan (1981). Deuterium isotope effect in the biotransformation of 4-ethynylbiphenyls to 4-biphenylacetic acids by rat hepatic microsomes. Biochem. Biophys. Res. Commun. 99, 662–667.

    Article  PubMed  CAS  Google Scholar 

  134. Ortiz de Montellano, P.R. and E.A. Komives (1985). Branchpoint for heme alkylation and metabolite formation in the oxidation of aryl acetylenes by cytochrome P450. J. Biol. Chem. 260, 3330–3336.

    PubMed  CAS  Google Scholar 

  135. Foroozesh, M., G. Primrose, Z. Guo, L.C. Bell, W.L. Alworth, and F.P. Guengerich (1997). Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem. Res. Toxicol. 10, 91–102.

    Article  PubMed  CAS  Google Scholar 

  136. Ortiz de Montellano, P.R. and M.A. Correia (1995). Inhibition of cytochrome P450 enzymes. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd edn. Plenum, New York, pp. 305–364.

    Google Scholar 

  137. Ortiz de Montellano, P.R. and B.A. Mico (1980). Destruction of cytochrome P-450 by ethylene and other olefins. Mol. Pharmacol. 18, 128–135.

    PubMed  CAS  Google Scholar 

  138. Kunze, K.L., B.L.K. Mangold, C. Wheeler, H.S. Beilan, and P.R. Ortiz de Montellano (1983). The cytochrome P-450 active site. Regiospecificity of the prosthetic heme alkylation by olefins and acetylenes. J. Biol. Chem. 258, 4202–4207.

    PubMed  CAS  Google Scholar 

  139. Ortiz de Montellano, P.R., R.A. Stearns, and K.C. Langry (1984). The allylisopropylacetamide and novonal prosthetic heme adducts. Mol. Pharmacol. 25, 310–317.

    PubMed  CAS  Google Scholar 

  140. Ortiz de Montellano, P.R. and K.L. Kunze (1981). Cytochrome P-450 inactivation: Structure of the prosthetic heme adduct with propyne. Biochemistry 20, 7266–7271.

    Article  PubMed  CAS  Google Scholar 

  141. Gan, L.-S., A.L. Acebo, and W.L. Alworth (1984). 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo [a]pyrene hydroxylase activity in liver microsomes. Biochemistry 23, 3827–3836.

    Article  PubMed  CAS  Google Scholar 

  142. CaJacob, C.A., W. Chan, E. Shephard, and P.R. Ortiz de Montellano (1988). The catalytic site of rat hepatic lauric acid omega-hydroxylase. Protein versus prosthetic heme alkylation in the omega-hydroxylation of acetylenic fatty acids. J. Biol. Chem. 263, 18640–18649.

    PubMed  CAS  Google Scholar 

  143. Henschler, D., W.R. Hoos, H. Fetz, E. Dallmeier, and M. Metzler (1979). Reactions of trichloroethylene epoxide in aqueous systems. Biochem. Pharmacol. 28, 543–548.

    Article  PubMed  CAS  Google Scholar 

  144. Miller, R.E. and F.P. Guengerich (1982). Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry 21, 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  145. Liebler, D.C. and F.P. Guengerich (1983). Olefin oxidation by cytochrome P-450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene. Biochemistry 22, 5482–5489.

    Article  PubMed  CAS  Google Scholar 

  146. Mansuy, D., J. Leclaire, M. Fontecave, and M. Momenteau (1984). Oxidation of monosubstituted olefins by cytochromes P450 and heme models: Evidence for the formation of aldehydes in addition to epoxides and allylic alcohols. Biochem. Biophys. Res. Commun. 119, 319–325.

    Article  PubMed  CAS  Google Scholar 

  147. Miller, V.P., J.A. Fruetel, and P.R. Ortiz de Montellano (1992). Cytochrome P450cam-catalyzed oxidation of a hypersensitive radical probe. Arch. Biochem. Biophys. 298, 697–702.

    Article  PubMed  CAS  Google Scholar 

  148. de Visser, S.P., F. Ogliaro, N. Harris, and S. Shaik (2001). Multi-state epoxidation of ethene by cytochrome P450: A quantum chemical study. J. Am. Chem. Soc. 123, 3037–3047.

    Article  PubMed  CAS  Google Scholar 

  149. de Visser, S.P., F. Ogliaro, and S. Shaik (2001). Stereospecific oxidation by compound I of cytochrome P450 does not proceed in a concerted synchronous manner. J. Chem. Soc. Chem. Commun. 2322–2323.

    Google Scholar 

  150. de Visser, S.P., F. Ogliaro, and S. Shaik (2001). How does ethene inactivate cytochrome P450 en route to its epoxidation? A density functional study. Angew. Chem. Int. Ed. 40, 2871–2874.

    Article  Google Scholar 

  151. Lovern, M.R., M.J. Turner, M. Meyer, G.L. Kedderis, W.E. Bechtold, and P.M. Schlosser (1997). Identification of benzene oxide as a product of benzene metabolism by mouse, rat, and human liver microsomes. Carcinogenesis 18, 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  152. Jerina, D.M. and J.W. Daly (1974). Arene oxides: A new aspect of drug metabolism. Science 185, 573–582.

    Article  PubMed  CAS  Google Scholar 

  153. Koerts, J., A.E.M.F. Soffers, J. Vervoort, A. De Jager, and I.M.C.M. Rietjens (1998). Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Chem. Res. Toxicol. 11, 503–512.

    Article  PubMed  CAS  Google Scholar 

  154. Hanzlik, R.P. and K.-H.J. Ling (1993). Active site dynamics of xylene hydroxylation by cytochrome P-450 as revealed by kinetic deuterium isotope effects. J. Am. Chem. Soc. 115, 9363–9370.

    Article  CAS  Google Scholar 

  155. Riley, P. and R.P. Hanzlik (1994). Electron transfer in P450 mechanisms. Microsomal metabolism of cyclopropylbenzene and p-cyclopropylanisole. Xenobiotica 24, 1–16.

    PubMed  CAS  Google Scholar 

  156. Tomaszewski, J.E., D.M. Jerina, and J.W. Daly (1975). Deuterium isotope effects during formation of phenols by hepatic monooxygenases: Evidence for an alternative to the arene oxide pathway. Biochemistry 14, 2024–2030.

    Article  PubMed  CAS  Google Scholar 

  157. Preston, B.D., J.A. Miller, and E.C. Miller (1983). Non-arene oxide aromatic ring hydroxylation of 2,2′,5,5′-tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver microsomes. J. Biol. Chem. 258, 8304–8311.

    PubMed  CAS  Google Scholar 

  158. Hanzlik, R.P., K. Hogberg, and C.M. Judson (1984). Microsomal hydroxylation of specifically deuterated monosubstituted benzenes: Evidence for direct aromatic hydroxylation. Biochemistry 23, 3048–3055.

    Article  PubMed  CAS  Google Scholar 

  159. Korzekwa, K.R., D.C. Swinney, and W.F. Trager (1989). Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation. Biochemistry 28, 9019–9027.

    Article  PubMed  CAS  Google Scholar 

  160. Rietjens, I.M.C. and J. Vervoort (1992). A new hypothesis for the mechanism for cytochrome P-450 dependent aerobic conversion of hexahalogenated benzenes to pentahalogenated phenols. Chem. Res. Toxicol. 5, 10–19.

    Article  PubMed  CAS  Google Scholar 

  161. Rietjens, I.M.C.M., A.E.M.F. Soffers, C. Veeger, and J. Vervoort (1993). Regioselectivity of cytochrome P-450 catalyzed hydroxylation of fluorobenzenes predicted by calculated frontier orbital substrate characteristics. Biochemistry 32, 4801–4812.

    Article  PubMed  CAS  Google Scholar 

  162. Zakharieva, O., M. Grodzicki, A.X. Trautwein, C. Veeger, and I.M.C.M. Rietjens (1996). Molecular orbital study of the hydroxylation of benzene and monofluorobenzene catalysed by iron-oxo porphyrin π-cation radical complexes. J. Biol. Inorg. Chem. 1, 192–204.

    Article  CAS  Google Scholar 

  163. Koerts, J., M.M.C. Velraeds, A.E.M.F. Sofferse, J. Vervoort, and I.M.C.M. Rietjens (1997). Influence of substituents in fluorobenzene derivatives on the cytochrome P450-catalyzed hydroxylation at the adjacent ortho aromatic carbon center. Chem. Res. Toxicol. 10, 279–288.

    Article  PubMed  CAS  Google Scholar 

  164. Ohe, T., T. Mashino, and M. Hirobe (1994). Novel metabolic pathway of arylethers by cytochrome P450: Cleavage of the oxygen-aromatic ring bond accompanying ipso-substitution by the oxygen atom of the active species in cytochrome P450 models and cytochrome P450. Arch. Biochem. Biophys. 310, 402–409.

    Article  PubMed  CAS  Google Scholar 

  165. Ohe, T., T. Mashino, and M. Hirobe (1997). Substituent elimination from p-substituted phenols by cytochrome P450. Ipso-substitution by the oxygen atom of the active species. Drug Metab. Dispos. 25, 116–122.

    PubMed  CAS  Google Scholar 

  166. Rizk, P.N. and R.P. Hanzlik (1995). Oxidative and non-oxidative metabolism of 4-iodoanisole by rat liver microsomes. Xenobiotica 25, 143–150.

    PubMed  CAS  Google Scholar 

  167. Hinson, J.A., S.D. Nelson, and J.R. Mitchell (1977). Studies on the microsomal formation of arylating metabolites of acetaminophen and phenacetin. Mol. Pharmacol. 13, 625–633.

    PubMed  CAS  Google Scholar 

  168. Hinson, J.A., S.D. Nelson, and J.R. Gillette (1979). Metabolism of [p-18O]-phenacetin: The mechanism of activation of phenacetin to reactive metabolites in hamsters. Mol. Pharmacol. 15, 419–427.

    PubMed  CAS  Google Scholar 

  169. Koymans, L., J.H.V. Lenthe, G.M.D. Den Kelder, and N.P.E. Vermeulen (1990). Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450: A theoretical study involving radical intermediates. Mol. Pharmacol. 37, 452–460.

    PubMed  CAS  Google Scholar 

  170. Veronese, M.E., S. McLean, C.A. D’Souze, and N.W. Davies (1985). Formation of reactive metabolites of phenacetin in humans and rats. Xenobiotica 15, 929–940.

    PubMed  CAS  Google Scholar 

  171. Rietjens, I.M.C.M., B. Tyrakowska, C. Veeger, and J. Vervoort (1990). Reaction pathways for biodehalogenation of fluorinated anilines. Eur. J. Biochem. 194, 945–954.

    Article  PubMed  CAS  Google Scholar 

  172. Stresser, D.M. and D. Kupfer (1997). Catalytic characteristics of CYP3A4: Requirement for a phenolic function in ortho-hydroxylation of estradiol and mono-O-demethylated methoxychlor. Biochemistry 36, 2203–2210.

    Article  PubMed  CAS  Google Scholar 

  173. Jellinck, P.H., E.F. Hahn, and J. Fishman (1986). Absence of reactive intermediates in the formation of catechol estrogens by rat liver microsomes. J. Biol. Chem. 261, 7729–7732.

    PubMed  CAS  Google Scholar 

  174. Sarabia, S.F., B.T. Zhu, T. Kurosawa, M. Tohma, and J.G. Liehr (1997). Mechanism of cytochrome P450-catalyzed aromatic hydroxylation of estrogens. Chem. Res. Toxicol. 10, 767–771.

    Article  PubMed  CAS  Google Scholar 

  175. Stadler, R. and M.H. Zenk (1993). The purification and characterization of a unique cytochrome P-450 enzyme from Berberis solonifera plant cell cultures. J. Biol. Chem. 268, 823–831.

    PubMed  CAS  Google Scholar 

  176. Kraus, P.F.X. and T.M. Kutchan (1995). Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C-O phenolcoupling cytochrome P450 from the higher plant Berberis stolonifera. Proc. Natl. Acad. Sci. USA. 92, 2071–2075.

    Article  PubMed  CAS  Google Scholar 

  177. Amann, T. and M.H. Zenk (1991). Formation of the morphine precursor salutaridine is catalyzed by a cytochrome P-450 enzyme in mammalian liver. Tetrahedron Lett. 32, 3675–3678.

    Article  CAS  Google Scholar 

  178. Gerardy, R. and M.H. Zenk (1993). Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P450 enzymes from Papaver somniferum. Phytochemistry 32, 79–86.

    Article  Google Scholar 

  179. Nasreen, A., M. Rueffer, and M.H. Zenk (1996). Cytochrome P-450-dependent formation of isoandrocymbine from autumnaline in colchicine biosynthesis. Tetrahedron Lett. 37, 8161–8164.

    Article  CAS  Google Scholar 

  180. Zerbe, K., O. Pylypenko, F. Vitali, W. Zhang, S. Rouset, M. Heck et al. (2002). Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J. Biol. Chem. 27, 47476–47485.

    Article  Google Scholar 

  181. Bischoff, D., S. Pelzer, B. Bister, G.J. Nicholson, S. Stockert, M. Schirle et al. (2001). The biosynthesis of vancomycin-type glycopeptide antibiotics—The order of the cyclization steps. Angew. Chem. Int. Ed. 40, 4688–4691.

    Article  CAS  Google Scholar 

  182. van Wageningen, A.M., P.N. Kirkpatrick, D.H. Williams, B.R. Harris, J.K. Kershaw, N.J. Lennard et al. (1998). Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem. Biol. 5, 155–162.

    Article  PubMed  Google Scholar 

  183. Pelzer, S., R. Sussmuth, D. Heckmann, J. Recktenwald, P. Huber, G. Jung et al. (1999). Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob. Agents Chemother. 43, 1565–1573.

    PubMed  CAS  Google Scholar 

  184. Chiu, H.-T., B.K. Hubbard, A.N. Shah, J. Eide, R.A. Fredenburg, C.T. Walsh et al. (2001). Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA. 98, 8548–8553.

    Article  PubMed  CAS  Google Scholar 

  185. Sato, H. and F.P. Guengerich (2000). Oxidation of 1,2,4,5-tetramethoxybenzene to a cation radical by cytochrome P450. J. Am. Chem. Soc. 122, 8099–8100.

    Article  CAS  Google Scholar 

  186. Anzenbacher, P., T. Niwa, L.M. Tolbert, S.R. Sirimanne, and F.P. Guengerich (1996). Oxidation of 9-alkylanthracenes by cytochrome P450 2B1, horseradish peroxidase, and iron tetraphenylporphine/iodosylbenzene systems: Anaerobic and aerobic mechanisms. Biochemistry 35, 2512–2520.

    Article  PubMed  CAS  Google Scholar 

  187. Ts’o, P.O., Caspary, W.J. and R.J. Lorentzen (1977). The involvement of free radicals in chemical carcinogenesis. In W.A. Pryor (ed.), Free Radicals in Biology vol. III. Academic Press, New York, pp. 251–303.

    Google Scholar 

  188. Cavalieri, E.L. and E.G. Rogan (1992). The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacol. Ther. 55, 183–199.

    Article  PubMed  CAS  Google Scholar 

  189. Cavalieri, E. and E. Rogan (1995). Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25, 677–688.

    PubMed  CAS  Google Scholar 

  190. Cavalieri, E., E. Rogan, R.W. Roth, R.K. Saugier, and A. Hakam (1983). The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA. Chem. Biol. Interact. 47, 87–109.

    Article  PubMed  CAS  Google Scholar 

  191. Devanesan, P., E. Rogan, and E. Cavalieri (1987). The relationship between ionization potential and prostaglandin H synthase-catalyzed binding of aromatic hydrocarbons to DNA. Chem. Biol. Interact. 61, 89–95.

    Article  PubMed  CAS  Google Scholar 

  192. Cavalieri, E.L., E.G. Rogan, P.D. Devanesan, P. Cremonesi, R.L. Cerny, M.L. Gross et al. (1990). Binding of benzo[a]pyrene to DNA by cytochrome P450-catalyzed one-electron oxidation in rat liver microsomes and nuclei. Biochemistry 29, 4820–4827.

    Article  PubMed  CAS  Google Scholar 

  193. Rogan, E.G., P.D. Devanesan, N.V.S. RamaKrishna, S. Higginbotham, N.S. Padmavathi, K. Chapman et al. (1993). Identification and quantitation of benzo[a]pyrene-DNA adducts formed in mouse skin. Chem. Res. Toxicol. 6, 356–363.

    Article  PubMed  CAS  Google Scholar 

  194. Khandwala, A.S. and C.B. Kasper (1973). Preferential induction of aryl hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene. Biochem. Biophys. Res. Commun. 54, 1241–1246.

    Article  PubMed  CAS  Google Scholar 

  195. Cavalieri, E.L., E.G. Rogan, P. Cremonesi, and P.D. Devanesan (1988). Radical cations as precursors in the metabolic formation of quinones from benzo[a]pyrene and 6-fluorobenzo[a]pyrene. Fluoro substitution as a probe for one-electron oxidation in aromatic substrates. Biochem. Pharmacol. 37, 2173–2182.

    Article  PubMed  CAS  Google Scholar 

  196. Rettie, A.E., A.W. Rettenmeier, W.N. Howald, and T.A. Baillie (1987). Cytochrome P-450-catalyzed formation of Δ4-VPA, a toxic metabolite of valproic acid. Science 235, 890–893.

    Article  PubMed  CAS  Google Scholar 

  197. Rettie, A.E., M. Boberg, A.W. Rettenmeier, and T.A. Baillie (1988). Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies. J. Biol. Chem. 263, 13733–13738.

    PubMed  CAS  Google Scholar 

  198. Porubeck, D.J., H. Barnes, G.P. Meier, L.J. Theodore, and T.A. Baillie (1989). Enantiotopic differentiation during the biotransformation of valproic acid to the hepatotoxic olefin 2-n-propyl-4-pentenoic acid. Chem. Res. Toxicol. 2, 35–40.

    Article  Google Scholar 

  199. Kassahun, K. and T.A. Baillie (1993). Cytochrome P-450-mediated dehydrogenation of 2-n-propyl-2(E)-pentenoic acid, a pharmacologically-active metabolite of valproic acid, in rat liver microsomal preparations. Drug Metab. Dispos. 21, 242–248.

    PubMed  CAS  Google Scholar 

  200. Sadeque, A.J.M., M.B. Fisher, K.R. Korzekwa, F.J. Gonzalez, and A.E. Rettie (1997). Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J. Pharmacol. Exp. Ther. 283, 698–703.

    PubMed  CAS  Google Scholar 

  201. Fisher, M.B., S.J. Thompson, V. Ribeiro, M.C. Lechner, and A.E. Rettie (1998). P450-catalyzed inchain desaturation of valproic acid: Isoform selectivity and mechanism of formation of Δ3-valproic acid generated by baculovirus-expressed CYP3A1. Arch. Biochem. Biophys. 356, 63–70.

    Article  PubMed  CAS  Google Scholar 

  202. Rettie, A.E., P.R. Sheffels, K.R. Korzekwa, F.J. Gonzalez, R.M. Philpot, and T.A. Baillie (1995). CYP4 isozyme specificity and the relationship between ω-hydroxylation and terminal desaturation of valproic acid. Biochemistry 34, 7889–7895.

    Article  PubMed  CAS  Google Scholar 

  203. Rettenmeier, A.W., W.P. Gordon, K.S. Prickett, R.H. Levy, J.S. Lockard, K.E. Thummel et al. (1986). Metabolic fate of valproic acid in the rhesus monkey. Formation of a toxic metabolite, 2-n-propyl-4-pentenoic acid. Drug Metab. Dispos. 14, 443–453.

    PubMed  CAS  Google Scholar 

  204. Pennanen, S., A. Kojo, M. Pasanen, J. Liesivuori, R.O. Juvonen, and H. Kumulainen (1996). CYP enzymes catalyze the formation of a terminal olefin from 2-ethylhexanoic acid in rat and human liver. Hum. Exp. Toxicol. 15, 435–442.

    PubMed  CAS  Google Scholar 

  205. Behrouzian, B. and P.H. Buist (2002). Fatty acid desaturation: Variations on an oxidative theme. Curr. Opin. Chem. Biol. 6, 577–582.

    Article  PubMed  CAS  Google Scholar 

  206. Obach, R.S. (2001). Mechanism of cytochrome P4503A4-and 2D6-catalyzed dehydrogenation of ezlopitant as probed with isotope effects using five deuterated analogs. Drug Metab. Dispos. 29, 1599–1607.

    PubMed  CAS  Google Scholar 

  207. Höld, K.M., N.S. Sirisoma, and J.E. Casida (2001). Detoxification of α-and β-thujones (the active ingredients of absinthe): Site specificity and species differences in cytochrome P450 oxidation in vitro and in vivo. Chem. Res. Toxicol. 14, 589–595.

    Article  PubMed  CAS  Google Scholar 

  208. Hata, S., T. Nishino, M. Komori, and H. Katsuki (1981). Involvement of cytochrome P-450 in Δ22-desaturation in ergosterol biosynthesis in yeast. Biochem. Biophys. Res. Commun. 103, 272–277.

    Article  PubMed  CAS  Google Scholar 

  209. Kelly, S.L., D.C. Lamb, B.C. Baldwin, A.J. Corran, and D.E. Kelly (1997). Characterization of Saccharomyces cerevisiae CYP61, sterol Δ22-desaturated, and inhibition by azole antifungal agents. J. Biol. Chem. 272, 9986–9988.

    Article  PubMed  CAS  Google Scholar 

  210. Skaggs, B.A., J.F. Alexander, C.A. Pierson, K.S. Schweitzer, K.T. Chun, C. Koegel et al. (1996). Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene 169, 105–109.

    Article  PubMed  CAS  Google Scholar 

  211. Lamb, D.C., S. Maspahy, D.E. Kelly, N.J. Manning, A. Geber, J.E. Bennett et al. (1999). Purification, reconstitution, and inhibition of cytochrome P-450 sterol Δ22-desaturase from the pathogenic fungus Candida glabrata. Antimicrob. Agents Chemother. 43, 1725–1728.

    PubMed  CAS  Google Scholar 

  212. Rodrigues, C.M.P., B.T. Kren, C.J. Steer, and K.D.R. Setchell (1996). Formation of D22-bile acids in rats is not gender specific and occurs in the peroxisome. J. Lipid Res. 37, 540–550.

    PubMed  CAS  Google Scholar 

  213. Nagata, K., D.J. Liberato, J.R. Gillette, and H.A. Sasame (1986). An unusual metabolite of testosterone: 17β-hydroxy-4,6-androstadiene-3-one. Drug Metab. Dispos. 14, 559–565.

    PubMed  CAS  Google Scholar 

  214. Aoyama, T., K. Korzekwa, K. Nagata, J. Gillette, H.V. Gelboin, and F.J. Gonzalez (1989). cDNA-directed expression of rat testosterone 7α-hydroxylase using the modified vaccinia virus, T7-RNA-polymerase system and evidence for 6□-hydroxylation and Δ6-testosterone formation. Eur. J. Biochem. 181, 331–336.

    Article  PubMed  CAS  Google Scholar 

  215. Korzekwa, K.R., W.F. Trager, K. Nagata, A. Parkinson, and J.R. Gillette (1990). Isotope effect studies on the mechanism of the cytochrome P-450IIA1-catalyzed formation of Δ6-testosterone from testosterone. Drug Metab. Dispos. 18, 974–979.

    PubMed  CAS  Google Scholar 

  216. Chadwick, R.W., L.T. Chuang, and K. Williams (1975). Dehydrogenation: A previously unreported pathway of lindane metabolism in mammals. Pestic. Biochem. Physiol. 5, 575–586.

    Article  CAS  Google Scholar 

  217. Mochizuki, H., K. Suhara, and M. Katagiri (1992). Steroid 6β-hydroxylase and 6-desaturase reactions catalyzed by adrenocortical mitochondrial P-450. J. Steroid Biochem. Mol. Biol. 42, 95–101.

    Article  PubMed  CAS  Google Scholar 

  218. Boyd, D.R., N.D. Sharma, R. Agarwal, R.A.S. McMordie, J.G.M. Bessems, B. van Ommen et al. (1993). Biotransformation of 1,2-dihydronaphthalene and 1,2-dihydroanthracene by rat liver microsomes and purified cytochromes P-450. Formation of arene hydrates of naphthalene and anthracene. Chem. Res. Toxicol. 6, 808–812.

    Article  PubMed  CAS  Google Scholar 

  219. Adams, J.D., H. Yagi, W. Levin, and D.M. Jerina (1995). Stereo-selectivity and regio-selectivity in the metabolism of 7,8-dihydrobenzo[a]pyrene by cytochrome P450, epoxide hydrolase and hepatic microsomes from 3-methylcholanthrene-treated rats. Chem. Biol. Interact. 95, 57–77.

    Article  PubMed  CAS  Google Scholar 

  220. Kaminsky, L.S., M.J. Fasco, and F.P. Guengerich (1980). Comparison of different forms of purified cytochrome P-450 from rat liver by immunological inhibition of regio-and stereoselective metabolism of warfarin. J. Biol. Chem. 255, 85–91.

    PubMed  CAS  Google Scholar 

  221. Vyas, K.P., P.H. Kari, S.R. Prakash, and D.E. Duggan (1990). Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Drug Metab. Dispos. 18, 218–222.

    PubMed  CAS  Google Scholar 

  222. Wang, R.W., P.H. Kari, A.Y.H. Lu, P.E. Thomas, F.P. Guengerich, and K.P. Vyas (1991). Biotransformation of lovostatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovostatin in rat and human liver microsomes. Arch. Biochem. Biophys. 290, 355–361.

    Article  PubMed  CAS  Google Scholar 

  223. Vickers, S. and C.A. Duncan (1991). Studies on the metabolic inversion of the 6′ chiral center of simvastatin. Biochem. Biophys. Res. Commun. 181, 1508–1515.

    Article  PubMed  CAS  Google Scholar 

  224. Guan, X., M.B. Fisher, D.H. Lang, Y.-M. Zhen, D.R. Koop, and A.E. Rettie (1998). Cytochrome P450-dependent desaturation of lauric acid: Isoform selectivity and mechanism of formation of 11-dodecenoic acid. Chem. Biol. Interact. 110, 103–131.

    Article  PubMed  CAS  Google Scholar 

  225. Kelkar, H.S., T.W. Skloss, J.F. Haw, N.P. Keller, and T.H. Adams (1997). Aspergillus nidulans stcL encodes a putative cytochrome P-450 monooxygenase required for bisfuran desaturation during aflatoxin and sterigmatocystin biosynthesis. J. Biol. Chem. 272, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  226. Akashi, T., M. Fukuchi-Mizutani, T. Aoki, Y. Ueyama, K. Yonekura-Sakakibara, Y. Tanaka et al. (1999). Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol. 40, 1182–1186.

    PubMed  CAS  Google Scholar 

  227. Guengerich, F.P. and D.H. Kim (1991). Enzymatic formation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1,N6-ethenoadenosine. Chem. Res. Toxicol. 4, 413–421.

    Article  PubMed  CAS  Google Scholar 

  228. Wood, A.W., D.C. Swinney, P.E. Thomas, D.E. Ryan, P.F. Hall, W. Levin et al. (1988). Mechanism of androstenedione formation from testosterone and epitestosterone catalyzed by purified cytochrome P-450b. J. Biol. Chem. 263, 17322–17332.

    PubMed  CAS  Google Scholar 

  229. Swinney, D.C., D.E. Ryan, P.E. Thomas, and W. Levin (1988). Evidence for concerted kinetic oxidation of progesterone by purified rat hepatic cytochrome P-450g. Biochemistry 27, 5461–5470.

    Article  PubMed  CAS  Google Scholar 

  230. Nelson, S.D., A.J. Forte, and D.C. Dhalin (1980). Lack of evidence for N-hydroxyacetaminophen as a reactive metabolite of acetaminophen in vitro. Biochem. Pharmacol. 29, 1617–1620.

    Article  PubMed  CAS  Google Scholar 

  231. Lee, J.S., N.E. Jacobsen, and P.R. Ortiz de Montellano (1988). 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines. Biochemistry 27, 7703–7710.

    Article  PubMed  CAS  Google Scholar 

  232. Guengerich, F.P., W.R. Brian, M. Iwasaki, M.-A. Sari, C. Bäärnhielm, and P. Berntsson (1991). Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J. Med. Chem. 34, 1838–1844.

    Article  PubMed  CAS  Google Scholar 

  233. Skiles, G.L. and G.S. Yost (1996). Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole. Chem. Res. Toxicol. 9, 291–297.

    Article  PubMed  CAS  Google Scholar 

  234. Zuleski, F.R., K.M. Kirkland, M.D. Melgar and J.O. Malbica (1985). Tracazolate metabolites in rat tissue. Drug Metab. Dispos. 13, 129–147.

    Google Scholar 

  235. Byon, C.-Y. and M. Gut (1980). Steric considerations regarding the biodegradation of cholesterol to pregnenolone. Exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates. Biochem. Biophys. Res. Commun. 94, 549–552.

    Article  PubMed  CAS  Google Scholar 

  236. Burstein, S., B.S. Middleditch, and M. Gut (1975). Mass spectrometric study of the enzymic conversion of cholesterol to (22R)-22-hydroxycholesterol, (20R,22R)-20,22-dihydroxycholesterol, and pregnenolone, and of (22R)-22-hydroxycholesterol to the glycol and pregnenolone in bovine adrenocortical preparations. Mode of oxygen incorporation. J. Biol. Chem. 250, 9028–9037.

    PubMed  CAS  Google Scholar 

  237. Lambeth, J.D., S.E. Kitchen, A.A. Farooqui, R. Tuckey, and H. Kamin (1982). Cytochrome P-450scc-substrate interactions. Studies of binding and catalytic activity using hydroxycholesterols. J. Biol. Chem. 257, 1876–1884.

    PubMed  CAS  Google Scholar 

  238. Tuckey, R.C. and H. Kamin (1983). Kinetics of oxygen and carbon monoxide binding to adrenal cytochrome P-450scc. Effect of cholesterol, intermediates, and phosphatidylcholine vesicles. J. Biol. Chem. 258, 4232–4237.

    PubMed  CAS  Google Scholar 

  239. Tuckey, R.C. and H. Kamin (1982). The oxyferro complex of adrenal cytochrome P-450scc. Effect of cholesterol and intermediates on its stability and optical characteristics. J. Biol. Chem. 257, 9309–9314.

    PubMed  CAS  Google Scholar 

  240. Primus, J.-L., K. Teunis, D. Mandon, C. Veeger, and I.M.C.M. Rietjens (2000). A Mechanism for oxygen exchange between ligated oxometalloporphinates and bulk water. Biochem. Biophys. Res. Commun. 272, 551–556.

    Article  PubMed  CAS  Google Scholar 

  241. Hochberg, R.B., P.D. McDonald, M. Feldman, and S. Lieberman (1974). Biosynthetic conversion of cholesterol into pregnenolone. Side chain cleavage of some 20-p-tolyl analogs of cholesterol and 20α-hydroxycholesterol. J. Biol. Chem. 249, 1274–1285.

    CAS  Google Scholar 

  242. Bower, S., J.B. Perkins, R.R. Yocum, C.L. Howitt, P. Rahaim, and J. Pero (1996). Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178, 4122–4130.

    PubMed  CAS  Google Scholar 

  243. Stok, J.E. and J.J. De Voss (2000). Expression, purification, and characterization of Biol: A carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 384, 351–360.

    Article  PubMed  CAS  Google Scholar 

  244. Green, A.J., S.L. Rivers, M. Cheesman, G.A. Reid, L.G. Quaroni, I.D.G. Macdonald et al. (2001). Expression, purification and characterization of cytochrome P450 BioI: A novel P450 involved in biotin synthesis in Bacillus subtilis. J. Biol. Inorg. Chem. 6, 523–533.

    Article  PubMed  CAS  Google Scholar 

  245. Cryle, M.J., N.J. Matovic, and J.J. De Voss (2003). Products of cytochrome P450BioI (CYP107H1)-catalysed oxidation of fatty acids. Org. Lett. 5, 3341–3344.

    Article  PubMed  CAS  Google Scholar 

  246. Cryle, M.J. and J.J. De Voss (2004). Carbon carbon bond cleavage by cytochrome P450BioI (CYP107H1). Chem. Commun. 86–87.

    Google Scholar 

  247. Cryle, M.J., J.E. Stok, and J.J. De Voss (2003). Reactions catalyzed by bacterial cytochromes P450. Aust. J. Chem. 56, 749–762.

    Article  CAS  Google Scholar 

  248. Umehara, K., S. Kudo, Y. Hirao, S. Morita, T. Ohtani, M. Uchida et al. (2000). In vitro characterization of the oxidative cleavage of the octyl side chain of olanexidine, a novel antimicrobial agent, in dog liver microsomes. Drug Metab. Dispos. 28, 1417–1424.

    PubMed  CAS  Google Scholar 

  249. Umehara, K., S. Kudo, Y. Hirao, S. Morita, M. Uchida, M. Odomi et al. (2000). Oxidative cleavage of the octyl side chain of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045) in rat and dog liver preparations. Drug Metab. Dispos. 28, 887–894.

    PubMed  CAS  Google Scholar 

  250. Barnes, H.J., M.P. Arlotto, and M.R. Waterman (1991). Expression and enzymatic activity of recombinant cytochrome P450 17 α-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. USA 88, 5597–5601.

    Article  PubMed  CAS  Google Scholar 

  251. Zuber, M.X., E.R. Simpson, and M.R. Waterman (1986). Expression of bovine 17 α-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells. Science 234, 1258–1261.

    Article  PubMed  CAS  Google Scholar 

  252. Nakajin, S., M. Takahashi, M. Shinoda, and P.F. Hall (1985). Cytochrome b5 promotes the synthesis of Δ16-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testis. Biochem. Biophys. Res. Commun. 132, 708–713.

    Article  PubMed  CAS  Google Scholar 

  253. Shimizu, K. (1978). Formation of 5-[17β-2H] androstene-3β,17α-diol from 3β-hydroxy-5-[17,21,21,21-2H]pregnen-20-one by the microsomal fraction of boar testis. J. Biol. Chem. 253, 4237–4241.

    PubMed  CAS  Google Scholar 

  254. Corina, D.L., S.L. Miller, J.N. Wright, and M. Akhtar (1991). The mechanism of cytochrome P-450 dependent carbon-carbon bond cleavage: Studies on 17α-hydroxylase-17,20-lyase. Chem. Commun. 782–783.

    Google Scholar 

  255. Mak, A.Y. and D.C. Swinney (1992). 17-O-Acetyltestosterone formation from progesterone in microsomes from pig testes: Evidence for the Baeyer-Villiger rearrangement in androgen formation catalyzed by CYP17. J. Am. Chem. Soc. 114, 8309–8310.

    Article  CAS  Google Scholar 

  256. Akhtar, M., D. Corina, S. Miller, A.Z. Shyadehi, and J.N. Wright (1994). Mechanism of the acylcarbon cleavage and related reactions catalyzed by multifunctional P-450s: Studies on cytochrome P-45017α. Biochemistry 33, 4410–4418.

    Article  PubMed  CAS  Google Scholar 

  257. Akhtar, M., D.L. Corina, S.L. Miller, A.Z. Shyadehi, and J.N. Wright (1994). Incorporation of label from 18O2 into acetate during side-chain cleavage catalyzed by cytochrome P-45017α (17α-hydroxylase-17,20-lyase). J. Chem. Soc., Perkin Trans. I, 263–267.

    Google Scholar 

  258. Lee-Robichaud, P., M.E. Akhtar, and M. Akhtar (1998). An analysis of the role of active site protic residues of cytochrome P-450s: Mechanistic and mutational studies on 17α-hydroxylase-17,20-lyase (P-45017α also CYP17). Biochem. J. 330, 967–974.

    PubMed  CAS  Google Scholar 

  259. Swinney, D.C. and A.Y. Mak (1994). Androgen formation by cytochrome P450 CYP17. Solvent isotope effect and pL studies suggest a role for protons in the regulation of oxene versus peroxide chemistry. Biochemistry 33, 2185–2190.

    Article  PubMed  CAS  Google Scholar 

  260. Lee-Robichaud, P., A.Z. Shyadehi, J.N. Wright, M. Akhtar, and M. Akhtar (1995). Mechanistic kinship between hydroxylation and desaturation reactions: Acyl-carbon bond cleavage promoted by pig and human CYP17 (P-45017α; 17α-hydroxylase-17,20-lyase). Biochemistry 34, 14104–14113.

    Article  PubMed  CAS  Google Scholar 

  261. Davis, S.C., Z. Sui, J.A. Peterson, and P.R. Ortiz de Montellano (1996). Oxidation of w-oxo fatty acids by cytochrome P450BM-3 (CYP102). Arch. Biochem. Biophys. 328, 35–42.

    Article  PubMed  CAS  Google Scholar 

  262. Thompson, E.A., Jr. and P.K. Siiteri (1974). The involvement of human placental microsomal cytochrome P-450 in aromatization. J. Biol. Chem. 249, 5373–5378.

    PubMed  CAS  Google Scholar 

  263. Kellis, J.T., Jr. and L.E. Vickery (1987). Purification and characterization of human placental aromatase cytochrome P-450. J. Biol. Chem. 262, 4413–4420.

    PubMed  CAS  Google Scholar 

  264. Thompson, E.A., Jr. and P.K. Siiteri (1974). Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. Biol. Chem. 249, 5364–5372.

    PubMed  CAS  Google Scholar 

  265. Caspi, E., T. Arunachalam, and P.A. Nelson (1983). Biosynthesis of estrogens: The steric mode of the initial C-19 hydroxylation of androgens by human placental aromatase. J. Am. Chem. Soc. 105, 6987–6989.

    Article  CAS  Google Scholar 

  266. Caspi, E., T. Arunachalam, and P.A. Nelson (1986). Biosynthesis of estrogens: Aromatization of (19R)-, (19S)-, and (19RS)-[19-3H,2H,1H]-3β-hydroxyandrost-5-en-17-ones by human placental aromatase. J. Am. Chem. Soc. 108, 1847–1852.

    Article  CAS  Google Scholar 

  267. Osawa, Y., K. Shibata, D. Rohrer, C. Weeks, and W.L. Duax (1975). Ressignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J. Am. Chem. Soc. 97, 4400–4402.

    Article  PubMed  CAS  Google Scholar 

  268. Arigoni, D., R. Battaglia, M. Akhtar, and T. Smith (1975). Stereospecificity of oxidation at C-19 in estrogen biosynthesis. Chem. Comm. 185–186.

    Google Scholar 

  269. Miyairi, S. and J. Fishman (1983). Novel method of evaluating biological 19-hydroxylation and aromatization of androgens. Biochem. Biophys. Res. Commun. 117, 392–398.

    Article  PubMed  CAS  Google Scholar 

  270. Miyairi, S. and J. Fishman (1985). Radiometric analysis of oxidative reactions in aromatization by placental microsomes. Presence of differential isotope effects. J. Biol. Chem. 260, 320–325.

    PubMed  CAS  Google Scholar 

  271. Numazawa, M., K. Midzuhashi, and M. Nagaoka (1994). Metabolic aspects of the 1β-proton and the 19-methyl group of androst-4-ene-3,6,17-trione during aromatization by placental microsomes and inactivation of aromatase. Biochem. Pharmacol. 47, 717–726.

    Article  PubMed  CAS  Google Scholar 

  272. Brodie, H.J., K.J. Kripalani, and G. Possanza (1969). Mechanism of estrogen biosynthesis. VI. The stereochemistry of hydrogen elimination at C-2 during aromatization. J. Am. Chem. Soc. 91, 1241–1242.

    Article  PubMed  Google Scholar 

  273. Fishman, J. and H. Guzik, (1969). Stereochemistry of estrogen biosynthesis. J. Am. Chem. Soc. 91, 2805–2806.

    Article  PubMed  CAS  Google Scholar 

  274. Fishman, J., H. Guzik, and D. Dixon (1969). Stereochemistry of estrogen biosynthesis. Biochemistry 8, 4304–4309.

    Article  PubMed  CAS  Google Scholar 

  275. Fishman, J. and M.S. Raju (1981). Mechanism of estrogen biosynthesis. Stereochemistry of C-1 hydrogen elimination in the aromatization of 2β-hydroxy-19-oxoandrostenedione. J. Biol. Chem. 256, 4472–4477.

    PubMed  CAS  Google Scholar 

  276. Townsley, J.D. and H.J. Brodie (1968). Mechanism of estrogen biosynthesis. III. Stereochemistry of aromatization of C19 and C18 steroids. Biochemistry 7, 33–40.

    Article  PubMed  CAS  Google Scholar 

  277. Osawa, Y., N. Yoshida, M. Fronckowiak, and J. Kitawaki (1987). Immunoaffinity purification of aromatase cytochrome P-450 from human placental microsomes, metabolic switching from aromatization at 1β and 2β-monohydroxylation, and recognition of aromatase isozymes. Steroids 50, 11–28.

    Article  PubMed  CAS  Google Scholar 

  278. Akhtar, M., M.R. Calder, D.L. Corina, and J.N. Wright (1982). Mechanistic studies on C-19 demethylation in estrogen biosynthesis. Biochem. J. 201, 569–580.

    PubMed  CAS  Google Scholar 

  279. Caspi, E., J. Wicha, T. Arunachalam, P. Nelson, and G. Spiteller (1984). Estrogen biosynthesis: Concerning the obligatory intermediacy of 2β-hydroxy-10β-formyl androst-4-ene-3,17-dione. J. Am. Chem. Soc. 106, 7282–7283.

    Article  CAS  Google Scholar 

  280. Morand, P., D.G. Williamson, D.S. Layne, L. Lompa-Krzymien, and J. Salvador (1975). Conversion of an androgen epoxide into 17β-estradiol by human placental microsomes. Biochemistry 14, 635–638.

    Article  PubMed  CAS  Google Scholar 

  281. Hosoda, H. and J. Fishman (1974). Unusually facile aromatization of 2b-hydroxy-19-oxo-4-androstene-3,17-dione to estrone. Implications in estrogen biosynthesis. J. Am. Chem. Soc. 96, 7325–7329.

    Article  PubMed  CAS  Google Scholar 

  282. Goto, J. and J. Fishman (1977). Participation of a nonenzymic transformation in the biosynthesis of estrogens from androgens. Science 195, 80–81.

    Article  PubMed  CAS  Google Scholar 

  283. Covey, D.F. and W.F. Hood (1982). A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase. Cancer Res. 42, 3327–3333.

    CAS  Google Scholar 

  284. Beusen, D.D. and D.F. Covey (1984). Study of the role of Schiff base formation in the aromatization of 3-[18O]testosterone and 3,17-di-[18O] androstenedione by human placental aromatase. J. Steroid Biochem. 20, 931–934.

    Article  PubMed  CAS  Google Scholar 

  285. Numazawa, M., A. Yoshimura, M. Tachibana, M. Shelangouski, and M. Ishikawa (2002). Time-dependent aromatase inactivation by 4β,5β-epoxides of the natural substrate androstenedione and its 19-oxygenated analogs. Steroids 67, 185–193.

    Article  PubMed  CAS  Google Scholar 

  286. Cole, P.A. and C.H. Robinson (1990). Conversion of 19-oxo[2b-2H]androgens into estrogens by human placental aromatase. An unexpected stereochemical outcome. Biochem. J. 268, 553–561.

    PubMed  CAS  Google Scholar 

  287. Swinney, D.C., D.M. Watson, and O.Y. So (1993). Accumulation of intermediates and isotopically sensitive enolization distinguish between aromatase (cytochrome P450 CYP19) from rat ovary and human placenta. Arch. Biochem. Biophys. 305, 61–67.

    Article  PubMed  CAS  Google Scholar 

  288. Akhtar, M., D. Corina, J. Pratt, and T. Smith (1976). Studies on the removal of C-19 in estrogen biosynthesis using oxygen-18. Chem. Commun. 854–856.

    Google Scholar 

  289. Stevenson, D.E., J.N. Wright, and M. Akhtar (1988). Mechanistic consideration of P-450 dependent enzymic reactions: Studies on oestriol biosynthesis. J. Chem. Soc., Perkin Trans. I 2043–2052.

    Google Scholar 

  290. Akhtar, M., V.C.O. Njar, and J.N. Wright (1993). Mechanistic studies on aromatase and related carbon-carbon bond cleaving P-450 enzymes. J. Steroid. Biochem. Mol. Biol. 44, 375–387.

    Article  PubMed  CAS  Google Scholar 

  291. Wertz, D.L., M.F. Sisemore, M. Selke, J. Driscoll, and J.S. Valentine (1998). Mimicking cytochrome P-450 2B4 and aromatase: Aromatization of a substrate analog by a peroxo Fe(III) porphyrin complex. J. Am. Chem. Soc. 120, 5331–5332.

    Article  CAS  Google Scholar 

  292. Goto, Y., S. Wada, I. Morishima, and Y. Watanabe (1998). Reactivity of peroxoiron(III) prophyrin complexes: Models for deformylation reactions catalyzed by cytochrome P-450. J. Inorg. Biochem. 69, 241–247.

    Article  CAS  Google Scholar 

  293. Cole, P.A. and C.H. Robinson (1988). Peroxide model reaction for placental aromatase. J. Am. Chem. Soc. 110, 1284–1285.

    Article  CAS  Google Scholar 

  294. Graham-Lorence, S., B. Amarneh, R.E. White, J.A. Peterson, and E.R. Simpson (1995). A three-dimensional model of aromatase cytochrome P450. Protein. Sci. 4, 1065–1080.

    PubMed  CAS  Google Scholar 

  295. Alexander, K., M. Akhtar, R.B. Boar, J.F. McGhie, and D.H.R. Barton (1972). Removal of the 32-carbon atom as formic acid in cholesterol biosynthesis. Chem. Commun. 383–385.

    Google Scholar 

  296. Mitropoulos, K.A., G.F. Gibbons, and B.E.A. Reeves (1976). Lanosterol 14α-demethylase. Similarity of the enzyme system from yeast and rat liver. Steroids 27, 821–829.

    Article  PubMed  CAS  Google Scholar 

  297. Canonica, L., A. Fiecchi, K.M. Galli, A.A. Scala, G. Galli, E. Grossi-Paoletti et al. (1968). Evidence for the biological conversion of Δ8,14 sterol dienes into cholesterol. J. Am. Chem. Soc. 90, 6532–6534.

    Article  PubMed  CAS  Google Scholar 

  298. Gibbons, G.F., L.J. Goad, and T.W. Goodwin (1968). Stereochemistry of hydrogen elimination from C-15 during cholesterol biosynthesis. J. Chem. Soc. Chem. Commun. 1458–1460.

    Google Scholar 

  299. Watkinson, I.A., D.C. Wilton, K.A. Munday, and M. Akhtar (1971). Formation and reduction of the 14,15-double bond in cholesterol biosynthesis. Biochem. J. 121, 131–137.

    PubMed  CAS  Google Scholar 

  300. Shafiee, A., J.M. Trzaskos, Y.K. Paik, and J.L. Gaylor (1986). Oxidative demethylation of lanosterol in cholesterol biosynthesis: Accumulation of sterol intermediates. J. Lipid Res. 27, 1–10.

    PubMed  CAS  Google Scholar 

  301. Trzaskos, J.M., R.T. Fischer, and M.F. Favata (1986). Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process. J. Biol. Chem. 261, 16936–16937.

    Google Scholar 

  302. Saucier, S.E., A.A. Kandutsch, S. Phirwa, and T.A. Spencer (1987). Accumulation of regulatory oxysterols, 32-oxolanosterol and 32-hydroxylanosterol in mevalonate-treated cell cultures. J. Biol. Chem. 262, 14056–14062.

    PubMed  CAS  Google Scholar 

  303. Aoyama, Y., Y. Yoshida, Y. Sonoda, and Y. Sato (1987). Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P 45014DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14α-demethylation. J. Biol. Chem. 262, 1239–1243.

    PubMed  CAS  Google Scholar 

  304. Aoyama, Y., Y. Yoshida, Y. Sonoda, and Y. Sato (1989). Deformylation of 32-oxo-24,25-dihydrolanosterol by the purified cytochrome P-45014DM (lanosterol 14α-demethylase) from yeast evidence confirming the intermediate step of lanosterol 14α-demethylation. J. Biol. Chem. 264, 18502–18505.

    PubMed  CAS  Google Scholar 

  305. Trzaskos, J., S. Kawata, and J.L. Gaylor (1986). Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14α-methyl demethylase cytochrome P-450 from hepatic microsomes. J. Biol. Chem. 261, 14651–14657.

    PubMed  CAS  Google Scholar 

  306. Sono, H., Y. Sonoda, and Y. Sato (1991). Purification and characterization of cytochrome P-45014DM (lanosterol 14α-demethylase) from pig liver microsomes. Biochim. Biophys. Acta 1078, 388–394.

    PubMed  CAS  Google Scholar 

  307. Sonoda, Y., M. Endo, K. Ishida, Y. Sato, N. Fukusen, and M. Fukuhara (1993). Purification of a human cytochrome P-450 isoenzyme catalyzing lanosterol 14α-demethylation. Biochim. Biophys. Acta 1170, 92–97.

    PubMed  CAS  Google Scholar 

  308. Alexander, K.T.W., M. Akhtar, R.B. Boar, J.F. McGhie, and D.H.R. Barton (1971). Pathway for the removal of C-32 in cholesterol biosynthesis. J. Chem. Soc., Chem. Commun. 1479–1481.

    Google Scholar 

  309. Akhtar, M., C.W. Freeman, D.C. Wilton, R.B. Boar, and D.B. Copsey (1977). The pathway for the removal of the 15α-methyl group of lanosterol. The role of lanost-8-ene-3β,32-diol in cholesterol biosynthesis. Bioorg. Chem. 6, 473–481.

    Article  CAS  Google Scholar 

  310. Akhtar, M., K. Alexander, R.B. Boar, J.F. McGhie, and D.H.R. Barton (1978). Chemical and enzymic studies on the characterization of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives. Biochem. J. 169, 449–463.

    PubMed  CAS  Google Scholar 

  311. Trzaskos, J.M., R.T. Fischer, S.S. Ko, R.L. Magolda, S. Stam, P. Johnson et al. (1995). Substrate-based inhibitors of lanosterol 14α-methyl demethylase: II. Time-dependent enzyme inactivation by selected oxylanosterol analogs. Biochemistry 34, 9677–9681.

    Article  PubMed  CAS  Google Scholar 

  312. Shyadehi, A.Z., D.C. Lamb, S.L. Kelly, D.E. Kelly, W.-H. Schunck, J.N. Wright et al. (1996). The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14α-demethylase of Candida albicans (other names are: lanosterol 14α-demethylase, P-45014DM, and CYP51). J. Biol. Chem. 271, 12445–12450.

    Article  PubMed  CAS  Google Scholar 

  313. Ramm, P.J. and E. Caspi (1969). Stereochemistry of tritium at carbon atoms 1, 7, and 15 in cholesterol derived from mevalonic-(3R,2R)-2-3H acid. J. Biol. Chem. 244, 6064–6073.

    PubMed  CAS  Google Scholar 

  314. Akhtar, M., A.D. Rahimtula, I.A. Watkinson, D.C. Wilton, and K.A. Munday (1969). Status of C-6, C-7, C-15, and C-16 hydrogen atoms in cholesterol biosynthesis. Eur. J. Biochem. 9, 107–111.

    Article  PubMed  CAS  Google Scholar 

  315. R.T. Fischer, J.M. Trzaskos, R.L. Magolda, S.S. Ko, C.S. Brosz, and B. Larsen (1991). Lanosterol 14α-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J. Biol. Chem. 266, 6124–6132.

    PubMed  CAS  Google Scholar 

  316. Lamb, D.C., D.E. Kelly, M.R. Waterman, M. Stromstedt, D. Rozman, and S.L. Kelly (1999). Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents. Yeast 15, 755–763.

    Article  PubMed  CAS  Google Scholar 

  317. Sloane, D.L., O.-Y. So, R. Leung, L.E. Scarafia, N. Saldou, K. Jarnagin et al. (1995). Cloning and functional expression of the cDNA encoding rat lanosterol 14α-demethylase. Gene 161, 243–248.

    Article  PubMed  CAS  Google Scholar 

  318. Cabello-Hurtado, F., M. Taton, N. Forthoffer, R. Kahn, S. Bak, A. Rahier et al. (1999). Optimized expression and catalytic properties of a wheat obtusifoliol 14α-demethylase (CYP51) expressed in yeast. Complementation of erg11D yeast mutants by plant CYP51. Eur. J. Biochem. 262, 435–446.

    Article  PubMed  CAS  Google Scholar 

  319. Bellamine, A., A.T. Mangla, W.D. Nes, and M.R. Waterman (1999). Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 96, 8937–8942.

    Article  PubMed  CAS  Google Scholar 

  320. Lamb, D.C., K. Fowler, T. Kieser, N. Manning, L.M. Podust, M.R. Waterman et al. (2002). Sterol 14α-demethylase activity in Streptomyces coelicolor A3(2) is associated with an unusual member of the CYP51 gene family. Biochem. J. 364, 555–562.

    Article  PubMed  CAS  Google Scholar 

  321. Jackson, C.J., D.C. Lamb, T.H. Marczylo, A.G.S. Warrilow, N.J. Manning, D.J. Lowe et al. (2002). A novel sterol 14α-Demethylase/Ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J. Biol. Chem. 277, 46959–46965.

    Article  PubMed  CAS  Google Scholar 

  322. Lamb, D.C., D.E. Kelly, and S.L. Kelly (1998). Molecular diversity of sterol 14α-demethylase substrates in plants, fungi and humans. FEBS Lett. 425, 263–265.

    Article  PubMed  CAS  Google Scholar 

  323. Roberts, E.S., A.D.N. Vaz, and M.J. Coon (1991). Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: Deformylation with olefin formation. Proc. Natl. Acad. Sci. USA 88, 8963–8966.

    Article  PubMed  CAS  Google Scholar 

  324. Vaz, A.D.N., E.A. Roberts, and M.J. Coon (1991). Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implications for catalysis by oxygen-derived peroxide. J. Am. Chem. Soc. 113, 5886–5887.

    Article  CAS  Google Scholar 

  325. Raner, G.M., E.W. Chiang, A.D.N. Vaz, and M.J. Coon (1997). Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: Relationship to aldehyde deformylation via a peroxyhemiacetal intermediate. Biochemistry 36, 4895–4902.

    Article  PubMed  CAS  Google Scholar 

  326. Vaz, A.D.N., K.J. Kessell, and M.J. Coon (1994). Aromatization of a bicyclic steroid analog, 3-oxode-calin-4-ene-10-carboxaldehyde, by liver microsomal cytochrome P450 2B4. Biochemistry 33, 13651–13661.

    Article  PubMed  CAS  Google Scholar 

  327. Vaz, A.D., S.J. Pernecky, G.M. Raner, and M.J. Coon (1996). Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: Switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc. Natl. Acad. Sci. USA 93, 4644–4648.

    Article  PubMed  CAS  Google Scholar 

  328. Kuo, C.L., G.M. Raner, A.D. Vaz, and M.J. Coon (1999). Discrete species of activated oxygen yield different cytochrome P450 heme adducts from aldehydes. Biochemistry 38, 10511–10518.

    Article  PubMed  CAS  Google Scholar 

  329. Raner, G.M., J.A. Hatchell, M.U. Dixon, T.L. Joy, A.E. Haddy, and E.R. Johnston (2002). Regioselective peroxo-dependent heme alkylation in P450BM3-F87G by aromatic aldehydes: Effects of alkylation on catalysis. Biochemistry 41, 9601–9610.

    Article  PubMed  CAS  Google Scholar 

  330. Reed, J.R., D. Vanderwel, S. Choi, G. Pomonis, R.C. Reitz, and G.J. Blomquist (1994). Unusual mechanism of hydrocarbon formation in the housefly: Cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc. Natl. Acad. Sci. USA 91, 10000–10004.

    Article  PubMed  CAS  Google Scholar 

  331. Reed, J.R., D.R. Quilici, G.J. Blomquist, and R.C. Reitz (1995). Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly, Musca domestica. Biochemistry 34, 16221–16227.

    Article  PubMed  CAS  Google Scholar 

  332. Adam, W., R. Curci, M.E. Gonzalez Nunez, and R. Mello (1991). Thermally and photochemically initiated radical chain decomposition of ketone-free methyl(trifluoromethyl)dioxirane. J. Am. Chem. Soc. 113, 7654–7658.

    Article  CAS  Google Scholar 

  333. Mpuru, S., J.R. Reed, R.C. Reitz, and G.J. Blomquist (1996). Mechanism of hydrocarbon biosynthesis from aldehyde in selected insect species: Requirement for O2 and NADPH and carbonyl group released as CO2. Insect Biochem. Mol. Biol. 26, 203–208.

    Article  CAS  Google Scholar 

  334. Spiteller, D., A. Jux, J. Piel, and W. Boland (2002). Feeding of [5,5-2H2]-1-desoxy-D-xylulose and [4,4,6,6,6-2H5]-mevalolactone to a geosminproducing Streptomyces sp. and Fossombronia pusilla. Phytochemistry 61, 827–834.

    Article  PubMed  CAS  Google Scholar 

  335. Yamamoto, H., N. Katano, A. Ooi, and K. Inoue (2000). Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry 53, 7–12.

    Article  PubMed  CAS  Google Scholar 

  336. Irmler, S., G. Schroder, B. St-Pierre, N.P. Crouch, M. Hotze, J. Schmidt et al. (2000). Indole alkaloid biosynthesis in Catharanthus roseus: New enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 24, 797–804.

    Article  PubMed  CAS  Google Scholar 

  337. Udwary, D.W., L.K. Casillas, and C.A. Townsend (2002). Synthesis of 11-hydroxyl O-methylsterigmatocystin and the role of a cytochrome P-450 in the final step of aflatoxin biosynthesis. J. Am. Chem. Soc. 124, 5294–5303.

    Article  PubMed  CAS  Google Scholar 

  338. Prieto, R. and C.P. Woloshuk (1997). ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Appl. Environ. Microbiol. 63, 1661–1666.

    PubMed  CAS  Google Scholar 

  339. Coolbaugh, R.C. (1997). Cytochrome P450-dependent steps in gibberellin biosynthesis. Proc. Plant Growth Regulator Soc. Am. 24, 10–14.

    Google Scholar 

  340. Helliwell, C.A., W.J. Peacock, and E.S. Dennis (2002). Isolation and functional characterization of cytochrome P450s in gibberellin biosynthesis pathway. Meth. Enzymol. 357, 381–388.

    PubMed  CAS  Google Scholar 

  341. Helliwell, C.A., P.M. Chandler, A. Poole, E.S. Dennis, and W.J. Peacock (2001). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 98, 2065–2070.

    Article  PubMed  CAS  Google Scholar 

  342. Rojas, M.C., P. Hedden, P. Gaskin, and B. Tudzynki (2001). The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc. Natl. Acad. Sci. USA 98, 5838–5843.

    Article  PubMed  CAS  Google Scholar 

  343. Fukuda, H., T. Fujii, E. Sukita, M. Tazaki, S. Nagahama, and T. Ogawa (1994). Reconstitution of the isobutene-forming reaction catalyzed by cytochrome P450 and P450 reductase from Rhodotorula minuta: Decarboxylation with the formation of isobutene. Biochem. Biophys. Res. Commun. 201, 516–522.

    Article  PubMed  CAS  Google Scholar 

  344. Shimaya, C. and T. Fujii (2000). Cytochrome P450rm of Rhodotorula functions in the β-ketoadipate pathway for dissimilation of L-phenylalanine. J. Biosci. Bioeng. 90, 465–467.

    PubMed  CAS  Google Scholar 

  345. Fukuda, H., K. Nakamura, E. Sukita, T. Ogawa, and T. Fujii (1996). Cytochrome P450rm from Rhodotorula minuta catalyzes 4-hydroxylation of benzoate. J. Biochem. 119, 314–318.

    PubMed  CAS  Google Scholar 

  346. Komuro, M., T. Higuchi, and M. Hirobe (1995). Application of chemical cytochrome P-450 model systems to studies on drug metabolism-VIII. Novel metabolism of carboxylic acids via oxidative decarboxylation. Bioorg. Med. Chem. 3, 55–65.

    Article  PubMed  CAS  Google Scholar 

  347. White, R.E., S.G. Sligar, and M.J. Coon (1980). Evidence for a homolytic mechanism of peroxide oxygen-oxygen bond cleavage during substrate hydroxylation by cytochrome P-450. J. Biol. Chem. 255, 11108–11111.

    PubMed  CAS  Google Scholar 

  348. Hashim, M.F., T. Hakamatsuka, Y. Ebizuka, and U. Sankawa (1990). Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett. 271, 219–222.

    Article  PubMed  CAS  Google Scholar 

  349. Akashi, T., T. Aoki, and S.-I. Ayabe (1999). Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821–828.

    Article  PubMed  CAS  Google Scholar 

  350. Hakamatsuka, T., M.F. Hashim, Y. Ebizuka, and U. Sankawa (1991). P-450-dependent oxidative rearrangement in isoflavone biosynthesis: Reconstitution of P-450 and NADPH:P-450 reductase. Tetrahedron 47, 5969–5978.

    Article  CAS  Google Scholar 

  351. Sawada, Y., K. Kinoshita, T. Akashi, T. Aoki, and S.-I. Ayabe (2002). Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J. 31, 555–564.

    Article  PubMed  CAS  Google Scholar 

  352. Yin, W., G.A. Doss, R.A. Stearns, A.G. Chaudhary, C.E. Hop, R.B. Franklin et al. (2003). A novel P450-catalyzed transformation of the 2,2,6,6-tetramethyl piperidine moiety to a 2,2-dimethyl pyrrolidine in human liver microsomes: Characterization by high resolution quadrupole-time-of-flight mass spectrometry and 1H-NMR. Drug Metab. Dispos. 31, 215–223.

    Article  PubMed  CAS  Google Scholar 

  353. Boucher, J.-L., M. Delaforge, and D. Mansuy (1994). Dehydration of alkyl-and arylaldoximes as a new cytochrome P450-catalyzed reaction: Mechanism and stereochemical characteristics. Biochemistry 33, 7811–7818.

    Article  PubMed  CAS  Google Scholar 

  354. Gupta, O.D., R.L. Kirchmeier, and J.M. Shreeve (1990). Reactions of trifluoroamine oxide: A route to acyclic and cyclic fluoroamines and N-nitrosoamines. J. Am. Chem. Soc. 112, 2383–2386.

    Article  CAS  Google Scholar 

  355. Tudzynski, B., M.C. Rojas, P. Gaskin, and P. Hedden (2002). The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J. Biol. Chem. 277, 21246–21253.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Ortiz de Montellano, P.R., De Voss, J.J. (2005). Substrate Oxidation by Cytochrome P450 Enzymes. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics