Skip to main content

Direct Observation of Amyloid Fibril Growth Monitored by Total Internal Reflection Fluorescence Microscopy

  • Chapter
Protein Misfolding, Aggregation, and Conformational Diseases

Part of the book series: Protein Reviews ((PRON,volume 4))

Abstract

Amyloid fibril formation is a phenomenon common to many proteins and peptides associated with numerous conformational diseases. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. This chapter describes a method to visualize amyloid fibril growth in real time at the single fibril level. This approach uses total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloidspecifi c fluorescence dye. The method enables an exact analysis of the rate of growth of individual fibrils. One of the advantages of TIRFM is that only amyloid fibrils lying in parallel with the slide glass surface were observed, so that one can obtain the exact length of fibrils. This method is of particular importance for the analysis of rapid fibrillation kinetics, providing unique information crucial for the elucidation of the molecular mechanisms of amyloid fibril formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ban, T., Hamada, D., Hasegawa, H., Naiki, H., and Goto, Y. (2003). Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278:16462–16465.

    Article  PubMed  CAS  Google Scholar 

  • Bjokman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Willy, D.C. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512.

    Article  Google Scholar 

  • Chiba, T., Hagihara, Y., Higurashi, T., Hasegawa, K., Naiki, H., and Goto, Y. (2003). Amyloid fibril formation in the context of full-length protein: effects of proline mutations on the amyloid fibril formation of β2-microglobulin. J. Biol. Chem. 278:47016–47024.

    Article  PubMed  CAS  Google Scholar 

  • Depace, A.H., and Weissman, J. S. (2002). Origins and kinetic consequences of diversity in Sup35 yeast prion fibrils. Nat. Struct. Biol. 9:389–396.

    PubMed  CAS  Google Scholar 

  • Dobson, C.M. (2003). Protein folding and misfolding. Nature 426:884–889.

    Article  PubMed  CAS  Google Scholar 

  • Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., and Yanagida, T. (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559.

    Article  PubMed  CAS  Google Scholar 

  • Gejyo, F., Yamada, T., Odani, S., Nakagawa, Y., Arakawa, M., Kunitomo, T., Kataoka, H., Suzuki, M., Nirasawa, Y., Shirahama, T., Cohen, A.S., and Schmid, K. (1985). A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem. Biophys. Res. Commun. 129:701–706.

    Article  PubMed  CAS  Google Scholar 

  • Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T., and Cooper, G.J. (1999). Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285:33–39.

    Article  PubMed  CAS  Google Scholar 

  • Green, J.D., Goldsbury, C., Kistler. J., Cooper. G.J.S., and Aebi, U. (2004). Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. J. Biol. Chem. 279:12206–12212.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J.A., and Higgins, G.A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, K., Yamaguchi, I., Omata, S., Gejyo, F., and Naiki, H. (1999). Interaction between Aβ (1-42) and Aβ(1-40) in Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry 38:15514–15521.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, K., Ono, K., Yamada, M., and Naiki, H. (2002). Kinetic modeling and determination of reaction constants of Alzheimer’s β-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41:13489–13498.

    Article  PubMed  CAS  Google Scholar 

  • Häggqvist, B., Näslund, J., Sletten, K., Westermark, G.T., Mucchiano, G., Tjernberg, L.O., Nordstedt, C., Engström, U., and Westermark, P. (1999). Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc. Natl. Acad. Sci. USA 96:8669–8674.

    Article  PubMed  Google Scholar 

  • Hoyer, W., Cherny, D., Subramaniam, V., and Jovin T.M. (2004). Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy. J. Mol. Biol. 340:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M., and Taguchi, H. (2001). Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276:35227–35230.

    Article  PubMed  CAS  Google Scholar 

  • Ionescu-Zanetti, C., Khurana, R., Gillespie, J.R., Petrick, J.S., Trabachino, L.C., Minert, L.J., Carter, S.A., and Fink, A.L. (1999). Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc. Natl. Acad. Sci. USA 96:13175–13179.

    Article  PubMed  CAS  Google Scholar 

  • Ippel, J.H., Olofsson, A., Schleucher, J.S., Lundgren, E., and Wijmenga, S.S. (2002). Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc. Natl. Acad. Sci. USA 99:8648–8653.

    Article  PubMed  CAS  Google Scholar 

  • Kad, N.M., Myers, S.L., Smith, D.P., Smith, D.A., Radford, S.E., and Thomson, N.H. (2003). Hierarchical assembly of β2-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol. 330:785–797.

    Article  PubMed  CAS  Google Scholar 

  • Katou, H., Kanno, T., Hoshino, M., Hagihara, Y., Tanaka, H., Kawai, T., Hasegawa, K., Naiki, H., and Goto, Y. (2002). The role of disulfide bond in the amyloidogenic state of β2-microglobulin studied by heteronuclear NMR. Protein Sci. 11:2219–2229.

    Article  CAS  Google Scholar 

  • Kozhukh, G.V., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H., and Goto, Y. (2002). Investigation of a peptide responsible for amyloid fibril formation of β2-microglobulin by Acromobacter protease I. J. Biol. Chem. 277:1310–1315.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M.P. (2004). Pathways towards and away from Alzheimer’s disease. Nature 430:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Naili, H., and Gejyo, F. (1999). Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309:305–318.

    Article  Google Scholar 

  • Naiki, H., Higuchi, K., Hosokawa, M., and Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T. Anal. Biochem. 177:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Naiki, H., Hashimoto, N., Suzuki, S., Kimura, H., Nakakuki, K., and Gejyo, F. (1997). Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4:223–232.

    CAS  Google Scholar 

  • Ohhashi, Y., Hagihara, Y., Kozhukh, G., Hoshino, M., Hasegawa, K., Yamaguchi, I., Naiki, H., and Goto, Y. (2002). The intrachain disulfide bond of β2-microglobulin is not essential for the immunoglobulin fold at neutral pH, but is essential for amyloid fibril formation at acidic pH. J. Biochem. 131:45–52.

    PubMed  CAS  Google Scholar 

  • Scheibel, T., Kowal, A.S., Bloom, J.D., and Lindquist, S.L. (2001). Bidirectional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11:366–369.

    Article  PubMed  CAS  Google Scholar 

  • Wazawa, T., Ishii, Y., Funatsu, T., and Yanagida, T. (2000). Spectral fluctuation of a single fluorophore conjugated to a protein molecule. Biophys. J. 78:1561–1569.

    PubMed  CAS  Google Scholar 

  • Yamasaki, R., Hoshino, M., Wazawa, T., Ishii, Y., Yanagida, T., Kawata, Y. Higurashi, T., Sakai, K., Nagai, J., and Goto, Y. (1999). Single molecular observation of the interaction of GroEL with substrate proteins. J. Mol. Biol. 292:965–972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ban, T., Goto, Y. (2006). Direct Observation of Amyloid Fibril Growth Monitored by Total Internal Reflection Fluorescence Microscopy. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_17

Download citation

Publish with us

Policies and ethics