Skip to main content

Tissue Engineering Skeletal Muscle

  • Chapter
Functional Tissue Engineering

Conclusion

In vitro tissue engineering of skeletal muscle involves culturing myogenic cells in an environment that emulates the in vivo environment so that the cells proliferate, fuse, organize in three dimensions, and differentiate into functional skeletal muscle. The tissue engineer uses a multitude of in vitro environmental cues to direct the proliferation process. The end result will be a skeletal muscle construct that resembles skeletal muscle in both form and function. The construct will be organized like a skeletal muscle, with long multinucleated cells oriented parallel to its long axis, and the construct will be capable of generating useful directed force and power. Such constructs have been developed from avian, rodent, and human primary muscle cells as well as immortalized myogenic cells. Measurements and characterization of the construct’s biochemical and contractile functions have begun. Use of these early generation constructs for basic science research, as implantable therapeutic protein delivery devices, and as drug screening constructs are moving forward. Skeletal muscle constructs will likely be implanted into humans as sources of secreted proteins in the near future, and will no doubt one day replace muscle contractile function in patients with functional deficits in force and power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acartuk TO, Peel MM, Petrosko, P, LaFromboise W, Johnson PC, DeMilla PA. 1999. Control of attachment, morphology, and proliferation of skeletal myoblasts on silanized glass. J. Biomed. Mater. Res. 44:355–370.

    Google Scholar 

  • Adams JC, Watt FM. 1993. Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.

    PubMed  CAS  Google Scholar 

  • Allen RE, Luiten LS, Dodson MV. 1985. Effect of insulin and linoleic acid on satellite cell differentiation. J. Anim. Sci. 60:1571–1579.

    PubMed  CAS  Google Scholar 

  • Bandman E, Strohman RC. 1982. Increased K+ inhibits spontaneous contractions reduces myosin accumulation in cultured chick myotubes. J. Cell. Biol. 93:698–704.

    Article  PubMed  CAS  Google Scholar 

  • Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L. 1999. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 7:141–153.

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76:1274–1278.

    PubMed  CAS  Google Scholar 

  • Bischoff R. 1986. A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115:140–147.

    PubMed  CAS  Google Scholar 

  • Brevet A, Pinto E, Peacock J, Stockdale FE. 1976. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science 193: 1152–1154.

    PubMed  CAS  Google Scholar 

  • Carlson BM, Faulkner JA. 1983. The regeneration of skeletal muscle fibers following injury: a review. Med. Sci Sports Exerc. 15:187–198.

    PubMed  CAS  Google Scholar 

  • Carson JA, Booth FW. 1998. Effect of serum and mechanical stretch on skeletal alpha-actin gene regulation in cultured primary muscle cells. Am. J. Physiol. 275:C1438–C1448.

    PubMed  CAS  Google Scholar 

  • Cerny LC, Bandman E. 1986. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J. Cell. Biol. 103:2153–2161.

    Article  PubMed  CAS  Google Scholar 

  • Charlton CA, Mohler WA, Radice GL, Hynes RO, Blau HM. 1997. Fusion competence of myoblasts rendered genetically null for N-cadherin in culture. J. Cell Biol. 138:331–336.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet M, Puri EC, Turner DC. 1979. Fibronectin mediates attachment of chicken myoblasts to a gelatincoated substratum. J. Biol. Chem. 254:5475–5482.

    PubMed  CAS  Google Scholar 

  • Chromiak JA, Vandenburgh HH. 1992. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation. Am. J. Physiol. 262:C1471–C1477.

    PubMed  CAS  Google Scholar 

  • Chromiak JA, Vandenburgh HH. 1994. Mechanical stimulation of skeletal muscle cells mitigates glucocorticoid-induced decreases in prostaglandin production and prostaglandin synthase activity. J. Cell Physiol. 159:407–414.

    Article  PubMed  CAS  Google Scholar 

  • Chromiak JA, Shansky J, Perrone, C, Vandenburgh HH. 1998. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell Dev. Biol. Anim. 34:694–703.

    PubMed  CAS  Google Scholar 

  • Clark P, Coles D, Peckham M. 1997. Preferential adhesion to and survival on patterned laminin organizes myogenesis in vitro. Exp. Cell Res. 230:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. 1990. Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108:635–644.

    PubMed  CAS  Google Scholar 

  • Close R. 1964. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 173:74–95.

    PubMed  CAS  Google Scholar 

  • Creswick BC, Shansky J, Lee PHU, Wang WY, Vandenburgh HH. 2000. Preliminary studies in support of a space shuttle flight experiment evaluating the ability of rhIGF-1 to attenuate space flight-induced skeletal muscle atrophy. Gravitational and Space Biology Bulletin. 14:53 (abstract)

    Google Scholar 

  • De laHaba G, Kamali HM, Tiede DM. 1975. Myogenesis of avian striated muscle in vitro: role of collagen in myofiber formation. Proc. Natl. Acad. Sci. U.S.A. 72:2729–2732.

    Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS. 1997. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum. Gene Ther. 8:1429–1438.

    PubMed  CAS  Google Scholar 

  • Dennis RG, Kosnik PE. 2000. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro [In Process Citation]. In Vitro Cell Dev. Biol. Anim. 36: 327–335.

    PubMed  CAS  Google Scholar 

  • Dennis RG, Kosnik PE, Gilbert ME, Faulkner JA. 2000. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am. J. Physiol. Cell. 280:C288–C295.

    Google Scholar 

  • Dollenmeier P, Turner DC, Eppenberger HM. 1981. Proliferation and differentiation of chick skeletal muscle cells cultured in a chemically defined medium. Exp. Cell Res. 135:47–61.

    Article  PubMed  CAS  Google Scholar 

  • Dusterhoft S, Pette D. 1993. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53:25–33.

    PubMed  CAS  Google Scholar 

  • Eagle H. 1959. Amino acid metabolism in mammalian cell cultures. Science 130:432–437.

    PubMed  CAS  Google Scholar 

  • Edgerton VR, Roy RR. 1996. Neuromuscular adaptations to actual and simulated weightlessness. In Handbook of Physiology. S. Churchill, ed. Environmental Physiology, Bethesd, MD: Am. Physiol. Soc. Sect. 4, Vol. III, Chap. 32 p 721–763.

    Google Scholar 

  • Eng H, Herrenknecht K, Semb H, Starzinski-Powitz A, Ringertz N, Gullberg D. 1997. Effects of divalent cations on M-cadherin expression and distribution during primary rat myogenesis in vitro. Differentiation 61:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Evans DJR, Britland S, Wigmore PM. 1999. Differential responses of fetal and neonatal myoblasts to topographical guidance cues in vitro. Dev. Genes Evol. 209:438–442.

    Article  PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ, Magri KA. 1991. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53:201–216.

    Article  PubMed  CAS  Google Scholar 

  • Goichberg P, Geiger B. 1998. Direct involvement of N-cadherin-mediated signaling in muscle differentiation. Mol. Biol Cell. 9:3119–3131.

    PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ. 1966a. Tension development in highly stretched vertebrate muscle fibres. J. Physiol. (Lond.) 184:143–169.

    CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ. 1966b. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.) 184:170–192.

    CAS  Google Scholar 

  • Grinnell AD. 1995. Dynamics of nerve-muscle interaction in developing and mature neuromuscular junctions. Physiol. Rev. 75:789–834.

    PubMed  CAS  Google Scholar 

  • Haines RW. 1932. The laws of muscle and tendon growth. J. Anat. 66:578–585.

    Google Scholar 

  • Ham RG, St. Clair JA, Meyer SD. 1990. Improved media for rapid clonal growth of normal human skeletal muscle satellite cells. Adv. Exp. Med. Biol. 280:193–199.

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621.

    Article  Google Scholar 

  • Higton DIR, James DW. 1964. The force of contraction of full-thickness wounds of rabbit skin. Br. J. Surg. 51:462–466.

    PubMed  CAS  Google Scholar 

  • Hinkle L, McCaig CD, Robinson KR. 1981. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol, (Lond.) 314:121–135.

    CAS  Google Scholar 

  • Irintchev A, Rosenblatt JD, Cullen MJ, Zweyer M, Wernig A. 1998. Ectopic skeletal muscles derived from myoblasts implanted under the skin. J. Cell Sci. 111 (Pt 22):3287–3297.

    PubMed  CAS  Google Scholar 

  • James DW, Taylor JF. 1969. The stress developed by sheets of chick fibroblasts in vitro. Exp. Cell Res. 54:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Kolodney MS, Wysolmerski RB. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Konigsberg IR. 1963. Clonal analysis of myogenesis. Science 140:1273–1284.

    PubMed  CAS  Google Scholar 

  • Lagord C, Soulet L, Bonavaud S, Bassaglia Y, Rey C, Barlovatz-Meimon G, Gautron J, Martelly I. 1998. Differential myogenicity of satellite cells isolated from extensor digitorum longus (EDL) and soleus rat muscles revealed in vitro. Cell Tissue Res. 291: 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Lewis WH, Lewis MR. 1917. Behavior of cross striated muscle in tissue cultures. Am J. Anat. 22:169–194.

    Article  Google Scholar 

  • Lu Y, Shansky J, Smiley B, Vandenburgh HH. 2001. Recombinant Vascular endothelial growth factor secreted from tissue engineered bioartificial muscles promotes localized angiogenesis. Circulation 104: 594–599.

    PubMed  CAS  Google Scholar 

  • Mantegazza R, Gebbia M, Mora M, Barresi R, Bernasconi P, Baggi F, Cornelio F. 1996. Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases. J. Neuroimmunol. 68:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Martin P. 1997. Wound healing-aiming for perfect skin regeneration. Science 276:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Mauro A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9:493–495.

    PubMed  CAS  Google Scholar 

  • Molnar G, Schroedl NA, Gonda SR, Hartzell CR. 1997. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev. Biol. Anim. 33:386–391.

    PubMed  CAS  Google Scholar 

  • Mooney DJ, Rowley JA. 1997. Tissue engineering: Integrating cells and materials to create functional tissue replacements. In: Controlled Drug Delivery: Challenges and Strategies. K. Park, ed. American Chemical Society, Washington, DC, pp. 333–346.

    Google Scholar 

  • Mulder MM, Hitchcock RW, Tresco PA. 1998. Skeletal myogenesis on elastomeric substrates: implications for tissue engineering. J Biomater. Sci. Polym. Ed. 9:731–748.

    PubMed  CAS  Google Scholar 

  • Mulder MM, McElwain JF, Tresco PA. 1995. Three dimensional culture system for myocyte growth and differentiation. J. Am. Soc. Artif. Intern. Organs 41:90 (abstract)

    Google Scholar 

  • Naumann K, Pette D. 1994. Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55:203–211.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Matsuda T. 1997. Hybrid muscular tissues: preparation of skeletal muscle cell-incorporated collagen gels. Cell Transplant. 6:109–118.

    PubMed  CAS  Google Scholar 

  • Okano T, Matsuda T. 1998a. Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant. 7:435–442.

    PubMed  CAS  Google Scholar 

  • Okano T, Matsuda T. 1998b. Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant. 7:71–82.

    PubMed  CAS  Google Scholar 

  • Okano T, Satoh S, Oka T, Matsuda T. 1997. Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43:M749–M753.

    PubMed  CAS  Google Scholar 

  • Partridge TA. 1991. Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve 14:197–212.

    Article  PubMed  CAS  Google Scholar 

  • Perrone CE, Fenwick-Smith D, Vandenburgh HH. 1995. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulinlike growth factor binding proteins from differentiated skeletal muscle cells. J. Biol. Chem. 270: 2099–2106.

    PubMed  CAS  Google Scholar 

  • Powell C, Shansky J, Del Tatto M, Forman DE, Hennessey J, Sullivan K, Zielinski BA, Vandenburgh HH. 1999. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum. Gene Ther. 10:565–577.

    PubMed  CAS  Google Scholar 

  • Putnam AJ, Mooneyy DJ. 1996. Tissue engineering using synthetic extracellular matrices. Nat. Med. 2:824–826.

    Article  PubMed  CAS  Google Scholar 

  • Redfield A, Nieman MT, Knudsen KA. 1997. Cadherins promote skeletal muscle differentiation in three-dimensional cultures. J. Cell Biol. 138: 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ. 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson RD, Fitch JM, Linsenmayer TR, Mayne R. 1986. Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J. Cell Biol. 102:740–747.

    Article  PubMed  CAS  Google Scholar 

  • Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, Horwitz AF. 1999. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J. Cell Biol. 144:1295–1309.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA. 1992. Transmembrane signaling by integrins. Trends Cell Biol. 2:304–308.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA, Ingber DE. 1994. Integrating with integrins. Mol. Biol Cell. 5:389–393.

    PubMed  CAS  Google Scholar 

  • Shainberg A, Yagil G, Yaffe D. 1969. Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp. Cell Res. 58:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Shansky J, Del Tatto M, Chromiak J, Vandenburgh H. 1997. A simplified method for tissue engineering skeletal muscle organoids in vitro [letter]. In Vitro Cell Dev. Biol. Anim. 33:659–661.

    PubMed  CAS  Google Scholar 

  • Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE. 2000. HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245.

    Article  PubMed  CAS  Google Scholar 

  • Snow MH. 1977a. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat. Rec. 188:181–199.

    PubMed  CAS  Google Scholar 

  • Snow MH. 1977b. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat. Rec. 188:201–217.

    PubMed  CAS  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I. 1999. Protein kinetics during and after long-duration spaceflight on MIR. Am. J. Physiol. 276:E1014–E1021.

    PubMed  CAS  Google Scholar 

  • Stockdale FE, Holtzer H. 1961. DNA synthesis and myogenesis. Exp. Cell Res. 24:508–520.

    Article  PubMed  CAS  Google Scholar 

  • Stoker M, O’Neill C, Berryman S, Waxman V. 1968. Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3:683–693.

    PubMed  CAS  Google Scholar 

  • Strohman RC, Bayne E, Spector D, Obinata T, Micou-Eastwood J, Maniotis A. 1990. Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell Dev. Biol. Anim. 26:201–208.

    CAS  Google Scholar 

  • Swasdison S, Mayne R. 1992. Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo. J. Cell Sci. 102 (Pt 3):643–652.

    Google Scholar 

  • Tanaka SM. 1999. A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J. Biomech. 32:427–430.

    Article  PubMed  CAS  Google Scholar 

  • Turner DC. 1986. Cell-cell and cell-matrix interactions in the morphogenesis of skeletal muscle. Dev. Biol. 3:205–224.

    CAS  Google Scholar 

  • Turner DC, Lawton J, Dollenmeier P, Ehrismann R, Chiquet M. 1983. Guidance of myogenic cell migration by oriented deposits of fibronectin. Dev. Biol. 95:497–504.

    Article  PubMed  CAS  Google Scholar 

  • van Wachem PB, van Luyn MJ, da Costa ML. 1996. Myoblast seeding in a collagen matrix evaluated in vitro. J. Biomed. Mater. Res. 30:353–360.

    PubMed  Google Scholar 

  • Vandenburgh HH. 1982. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev. Biol. 93:438–443.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh HH. 1983. Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J. Cell Physiol. 116:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Karlisch P. 1989. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev. Biol. Anim. 25:607–616.

    CAS  Google Scholar 

  • Vandenburgh H, Kaufman S. 1979. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268.

    PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Kaufman S. 1981. Stretch-induced growth of skeletal myotubes correlates with activation of the sodium pump. J. Cell Physiol. 109:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Karlisch P, Farr L. 1988. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev. Biol. Anim. 24:166–174.

    CAS  Google Scholar 

  • Vandenburgh HH, Hatfaludy S, Karlisch P, Shansky J. 1989. Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am. J. Physiol. 256:C674–C682.

    PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Swasdison S, Karlisch P. 1991. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5:2860–2867.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H, Del Tatto M, Shansky J, LeMaire J, Chang A, Payumo F, Lee P, Goodyear A, Raven L. 1996. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7:2195–2200.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H, Del Tatto M, Shansky J, Goldstein L, Russell K, Genes N, Chromiak J, Yamada S. 1998a. Attenuation of skeletal muscle wasting with recombinant human growth hormone secreted from a tissue-engineered bioartificial muscle. Hum. Gene Ther. 9:2555–2564.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Shansky J, Del Tatto M, Chromiak J. 1998b. Organogenesis of skeletal muscle in tissue culture. In: Methods in Molecular Medicine: Tissue Engineering. J Morgan, M Yarmush, eds. Humana Press, Tottowa, NJ.

    Google Scholar 

  • Vandenburgh H, Chromiak J, Shansky J, Del Tatto M, LeMaire J. 1999. Space travel directly induces skeletal muscle atrophy. FASEB J. 13:1031–1038.

    PubMed  CAS  Google Scholar 

  • Waldeyer W. 1865. Uber die Veränderungen der quergestreiften Muskeln bei der Entzündung und dem Typhusprozess, sowie über die Regeneration derselben nach Substanzdefecten. Virchows Arch. Pathol. Anat. Physiol. Clin. Med. 34:473–514.

    Google Scholar 

  • Wang N, Butler JP, Ingber DE. 1993. Mechanotransduction across the cell surface and through the cytoskeleton [see comments]. Science 260:1124–1127.

    PubMed  CAS  Google Scholar 

  • Wehrle U, Dusterhoft S, Pette D. 1994. Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation 58:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Weiss P. 1932. Functional adaptation and the role of ground substances in development. Am. Naturalist 67:322–340.

    Google Scholar 

  • Wernig A, Irintchev A, Lange G. 1995. Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J. Physiol. (Lond.) 484 (Pt 2):493–504.

    CAS  Google Scholar 

  • Woo SL, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH. 1999. Tissue engineering of ligament and tendon healing. Clin. Orthop. S312-S323.

    Google Scholar 

  • Yaffe D. 1968. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci U.S.A. 61:477–483.

    PubMed  CAS  Google Scholar 

  • Yaffe D. 1971. Developmental changes preceding cell fusion during muscle differentiation in vitro. Exp. Cell Res. 66:33–48.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kosnik, P.E., Dennis, R.G., Vandenburgh, H.H. (2003). Tissue Engineering Skeletal Muscle. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_28

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics