Skip to main content

Bioengineering the Growth of Articular Cartilage

  • Chapter
Functional Tissue Engineering
  • 371 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahsan T., Harwood F.H., Amiel D., Sah R.L. 2000. Kinetics of collagen crosslinking in adult bovine articular cartilage. Trans. Orthop. Res. Soc. 25:111.

    Google Scholar 

  • Almeida E.S., Spilker R.L. 1997. Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformation. Part I-alternative formulations. Comp. Meth. Biomech. Biomed. Eng. 1:25–46.

    Google Scholar 

  • Basser P.J., Schneiderman R., Bank R., Wachtel E., Maroudas A. 1998. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Beaupre G.S., Orr T.E., Carter D.R. 1990. An approach for time-dependent bone modeling and remodeling-theoretical development. J. Orthop. Res. 8:651–661.

    PubMed  CAS  Google Scholar 

  • Bhakta N.R., Garcia A.M., Frank E.H., Grodzinsky A.J., Morales T.I. 2000. The insulin-like growth factors (IGFs) I and II bind to articular cartilage via the IGF-binding proteins. J. Biol. Chem. 275: 5860–5866.

    PubMed  CAS  Google Scholar 

  • Bolis S., Handley C.J., Comper W.D. 1989. Passive loss of proteoglycan from articular cartilage explants. Biochim. Biophys. Acta 993:157–167.

    PubMed  CAS  Google Scholar 

  • Bonassar L.J., Grodzinsky A.J., Srinivasan A., Davila S.G., Trippel S.B. 2000. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Brand H.S., de Koning M.H., van Kampen G.P., van der Korst J.K. 1991. Age related changes in the turnover of proteoglycans from explants of bovine articular cartilage. J. Rheumatol. 18:599–605.

    PubMed  CAS  Google Scholar 

  • Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895.

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter J.A., Mankin H.J. 1997. Articular cartilage. Part I: tissue design and chondrocyte-matrix interactions. J. Bone Joint Surg. 79-A:600–611.

    Google Scholar 

  • Buckwalter J.A., Mankin H.J. 1998. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47:487–504.

    PubMed  CAS  Google Scholar 

  • Butler D.L., Goldstein S.A., Guilak F. 2000. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575.

    Article  PubMed  CAS  Google Scholar 

  • Carter D.R., Wong M. 1988. Mechanical stresses and endochondral ossification in the chondroepiphysis. J. Orthop. Res. 6:148–154.

    PubMed  CAS  Google Scholar 

  • Chen Y.C., Hoger A. 2000. Constitutive functions for elastic materials in finite growth and deformation. J. Elast. 59:175–193.

    Article  Google Scholar 

  • Cowin S.C. 1993. Bone stress adaptation models. J. Biomech. Eng. 115:528–533.

    PubMed  CAS  Google Scholar 

  • Cowin, S.C., Hegedus D.M. 1976. Bone remodeling I: A theory of adaptive elasticity. J. Elast. 6:313–325.

    Google Scholar 

  • Dean D.D., Martel-Pelletier J., Pelletier J.P., Howell D.S., Woessner J.F.J. 1989. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest. 84:678–685.

    PubMed  CAS  Google Scholar 

  • Dorland W.A. 1981. Dorland’s Illustrated Medical Dictionary. W.B. Saunders Company, Philadelphia.

    Google Scholar 

  • Evans C.H., Watkins S.C., Stefanovic-Racic M. 1996. Nitric oxide and cartilage metabolism. Methods Enzymol. 269:75–88.

    PubMed  CAS  Google Scholar 

  • Fosang A.J., Tyler J.A., Hardingham T.E. 1991. Effect of interleukin-1 and insulin like growth factor-1 on the release of proteoglycan components and hyaluronan from pig articular cartilage in explant cultures. Matrix 11:17–24.

    PubMed  CAS  Google Scholar 

  • Fujimoto E., Ochi M., Kato Y., Mochizuki Y., Sumen Y., Ikuta Y. 1999. Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage. Arch. Orthop. Trauma Surg. 119:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Fung Y.C. 1993. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Furuto D.K., Miller E.J. 1987. Isolation and characterization of collagens and procollagens. Methods Enzymol. 144:41–139.

    PubMed  CAS  Google Scholar 

  • Galban C.J., Locke B.R. 1997. Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotechnol. Bioeng. 56:422–432.

    Article  CAS  Google Scholar 

  • Galban C.J., Locke B.R. 1999. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol. Bioeng. 65:121–132.

    Article  PubMed  CAS  Google Scholar 

  • Grande D.A., Singh I.J., Pugh J. 1987. Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat. Rec. 218:142–148.

    Article  PubMed  CAS  Google Scholar 

  • Grodzinsky A.J. 1983. Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Bioeng. 9:133–199.

    CAS  Google Scholar 

  • Guilak F., Sah R.L., Setton L.A. 1997. In Physical regulation of cartilage metabolism Basic Orthopaedic Biomechanics. V.C. Mow, W.C. Hayes, eds. Raven Press, New York, pp. 179–207.

    Google Scholar 

  • Hardingham T.E., Bayliss M.T., Rayan V., Noble D.P. 1992. Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage. Br. J. Rheum. 31S1:1–6.

    Google Scholar 

  • Hascall V.C., Luyten F.P., Plaas A.H.K., Sandy J.D. 1990. In Methods in Cartilage Research. A. Maroudas, K. Kuettner, eds. Academic Press, San Diego, p. 108–112.

    Google Scholar 

  • Hjertquist S.O., Lemperg R. 1969. Transplantation of autologous costal cartilage to an osteochondral defect on the femoral head. Histological and autoradiographical studies in adult rabbits after administration of 35S-sulphate and 3H-thymidine. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 346:345–360.

    PubMed  CAS  Google Scholar 

  • Hodge W.A., Fijan R.S., Carlson K.L., Burgess R.G., Harris W.H., Mann R.W. 1986. Contact pressures in the human hip joint measured in vivo. Proc. Natl. Acad. Sci. U.S.A. 83:2879–2883.

    PubMed  CAS  Google Scholar 

  • Hollander A.P., Heathfield T.F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A.R. 1994. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93:1722–1732.

    PubMed  CAS  Google Scholar 

  • Hutchinson N.I., Lark M.W., MacNaul K.L., Harper C., Hoerrner L.A., McDonnell J., Donatelli S., Moore V., Bayne E.K. 1992. In vivo expression of stromelysin in synovium and cartilage of rabbits injected intraarticularly with interleukin-1β. Arthritis Rheum 35:1227–1233.

    PubMed  CAS  Google Scholar 

  • Kandel R.A., Pritzker K.P.H., Mills G.B., Cruz T.F. 1990. Fetal bovine serum inhibits chondrocyte collagenase production: interleukin 1 reverses this effect. Biochim. Biophys. Acta. 1053:130–134.

    PubMed  CAS  Google Scholar 

  • Klisch S.M., Hoger, A. 2001. A theory of volumetric growth for compressible elastic biological materials. Math. Mech. Solids. 6:551

    Google Scholar 

  • Klisch S.M., Sah R.L., Hoger A. 2000. A growth mixture theory for cartilage. ASME Mech. Biol. BED-46:229–242.

    Google Scholar 

  • Klisch S.M., Chen S.S., Hoger A., Sah R.L. 2001a. Modeling the compositional and mechanical changes in developing bovine articular cartilage using a cartilage growth theory. J. Biomech. Eng. (in revision)

    Google Scholar 

  • Klisch S.M., Chen, S.S., Masuda, K., Thonar E.J.-M.A., Hoger A., Sah R.L. 2001b. Application of a growth and remodeling mixture theory to developing articular cartilage. Trans. Orthop. Res. Soc. 26:316.

    Google Scholar 

  • Klisch S.M., Van Dyke T., Hoger A. 2001c. A theory of volumetric growth for compressible elastic materials. Math. Mech. Solids 6:551–575.

    Google Scholar 

  • Lai W.M., Hou J.S., Mow V.C. 1991. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258.

    PubMed  CAS  Google Scholar 

  • Li K.W., Williamson A.K., Wang A.S., Sah R.L. 2001. Growth responses of cartilage to static and dynamic compression. Clin. Orthop. 391(Supp): S34–48.

    PubMed  Google Scholar 

  • Lin I.E., Taber L. 1995. A model for stress-induced growth in the developing heart. J. Biomech. Eng. 117:343–349.

    PubMed  CAS  Google Scholar 

  • Lohmander L.S., Kimura J. 1986. Biosynthesis of cartilage proteoglycan. In: Articular Cartilage Biochemistry. K. Kuettner, R. Schleyerbach, V.C. Hascall, eds. Raven Press, New York.

    Google Scholar 

  • Maroudas A. 1976a. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809.

    Article  PubMed  CAS  Google Scholar 

  • Maroudas A. 1976b. Transport of solutes through cartilage: permeability to large molecules. J. Anat. 122:335–347.

    PubMed  CAS  Google Scholar 

  • Maroudas A. 1979. Physiochemical properties of articular cartilage. In: Adult Articular Cartilage. M.A.R. Freeman, ed Pitman Medical, Tunbridge Wells, U.K., pp. 215–290.

    Google Scholar 

  • Maroudas A., Bullough P., Swanson S.A.V., Freeman M.A.R. 1968. The permeability of articular cartilage. J. Bone Joint Surg. 50-B:166–177.

    Google Scholar 

  • Merriam-Webster Collegiate Dictionary. 2001. Merriam-Webster, Springfield, MA.

    Google Scholar 

  • Mills N. 1966. Incompressible mixtures of Newtonian fluids. Int. J. Eng. Sci. 4:97–112.

    Article  Google Scholar 

  • Morales T.I., Roberts A.B. 1988. Transforming growth factor-β regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J. Biol. Chem. 263:12828–12831.

    PubMed  CAS  Google Scholar 

  • Mow V.C., Ratcliffe A. 1997. In: Basic Orthopaedic Biomechanics. V.C. Mow, W.C. Hayes, eds. Raven Press, New York, pp. 113–178.

    Google Scholar 

  • Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G. 1980. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment. J. Biomech. Eng. 102:73–84.

    PubMed  CAS  Google Scholar 

  • Nixon A.J., Fortier L.A., Williams J., Mohammed H. 1999. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J. Orthop. Res. 17:475–487.

    Article  PubMed  CAS  Google Scholar 

  • Obradovic B., Meldon J.H., Freed L.E., Vunjak-Novakovic G. 2000. Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J 46:1860–1871.

    Article  CAS  Google Scholar 

  • Ogden J.A. 1988. In: Behavior of the Growth Plate. H.K. Uhthoff, J.J. Wiley, ed. Raven Press, New York, pp. 85–96.

    Google Scholar 

  • Pal S., Tang L.-H., Choi H., Habermann E., Rosenberg L., Roughley P., Poole A.R. 1981. Structural changes during development in bovine fetal epiphyseal cartilage. Collagen Rel. Res. 1:151–176.

    CAS  Google Scholar 

  • Pauwels, F. 1976. Biomechanics of the Normal and Diseased Hip; Theoretical Foundations, Technique and Results of Treatment; An Atlas. Springer-Verlag, New York.

    Google Scholar 

  • Pottenger L.A., Webb J.E., Lyon N.B. 1985. Kinetics of extraction of proteoglycans from human cartilage. Arthritis Rheum. 28:323–330.

    PubMed  CAS  Google Scholar 

  • Rodriguez E.K., Hoger A., McCulloch A.D. 1994. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467.

    Article  PubMed  CAS  Google Scholar 

  • Sah R.L., Chen A.C., Grodzinsky A.J., Trippel S.B. 1994. Differential effects of IGF-I and bFGF on matrix metabolism in calf and adult bovine cartilage explants. Arch. Biochem. Biophys. 308: 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Sah R.L., Trippel S.B., Grodzinsky A.J. 1996. Differential effects of serum, IGF-I, and FGF-2 on the maintenance of cartilage physical properties during long-term culture. J. Orthop. Res. 14: 44–52.

    Article  PubMed  CAS  Google Scholar 

  • Sah R.L., Chen A.C., Chen S.S., Li K.W., DiMicco M.A., Kurtis M.S., Lottman L.M., Sandy J.D. 2001. In: Arthritis and Allied Conditions. A Textbook of Rheumatology. W.J. Koopman, ed. Lippincott, Williams & Wilkins, Philadelphia; pp. 2264–2278.

    Google Scholar 

  • Sajdera S.W., Hascall V.C. 1969. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J. Biol. Chem. 244:77–87.

    PubMed  CAS  Google Scholar 

  • Sandy J.D., Plaas A.H.K. 1986. Age-related changes in the kinetics of release of proteoglycans from normal rabbit cartilage explants. J. Orthop. Res. 4:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Sandy J., Verscharen C. 2001. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover of whole aggrecan whereas MMP-like activity is required primarily for C-terminal processing of the molecule. Biochem. J. 358:615–626

    Article  PubMed  CAS  Google Scholar 

  • Schinagl R.M., Gurskis D., Chen A.C., Sah R.L. 1997. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman R., Snir E., Popper O., Hiss J., Stein H., Maroudas A. 1995. Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion. Arch. Biochem. Biophys. 324:159–172.

    PubMed  CAS  Google Scholar 

  • Skalak R., Gasgupta G., Moss M., Otten E., Dullemeijer P., Vilmann H. 1982. Analytical description of growth. J. Theor. Biol. 94:555–577.

    Article  PubMed  CAS  Google Scholar 

  • Skalak R., Zargaryan S., Jain R.K., Netti P.A., Hoger A. 1996. Compatability and the genesis of residual stress by volumetric growth. J. Math. Biol. 34:889–914.

    PubMed  CAS  Google Scholar 

  • Skalak R., Farrow D.A., Hoger A. 1997. Kinematics of surface growth. J. Math. Biol. 35:869–907.

    Article  PubMed  CAS  Google Scholar 

  • Strider W., Pal S., Rosenberg L. 1975. Comparison of proteoglycans from bovine articular cartilage. Biochim. Biophys. Acta. 379:271–281.

    PubMed  CAS  Google Scholar 

  • Taber L. 1998. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120:348–354.

    PubMed  CAS  Google Scholar 

  • Taber L.A., Eggers D.W. 1996. Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180:343–357.

    Article  PubMed  CAS  Google Scholar 

  • Thonar E.J.-M., Sweet M.B.E. 1981. Maturation-related changes in proteoglycans of fetal articular cartilage. Arch. Biochem. Biophys. 208:535–547.

    Article  PubMed  CAS  Google Scholar 

  • Torzilli P.A., Adams T.C., Mis R.J. 1987. Transient solute diffusion in articular cartilage. J. Biomech. 20:203–214.

    Article  PubMed  CAS  Google Scholar 

  • Torzilli P.A., Arduino J.M., Gregory J.D., Bansal M. 1997. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30:895–902.

    PubMed  CAS  Google Scholar 

  • Trippel S.B. 1995. Growth factor actions on articular cartilage. J Rheumatol 43S:129–132.

    Google Scholar 

  • Van Dyke T.J., Hoger A. 2001. Should the growth law be defined on the current or initial configuration? J. Theor. Biol. (submitted).

    Google Scholar 

  • Venn M. F., Maroudas A. 1977. Chemical composition and swelling of normal and osteoarthritic femoral head cartilage I: chemical composition. Ann. Rheum. Dis. 36:121–129.

    PubMed  CAS  Google Scholar 

  • Williamson A.W., Chen A.C., Sah R.L. 2001. Compressive properties and structure-function relationships of developing bovine articular cartilage. J. Orthop. Res. 19:1113–1112.

    Article  PubMed  CAS  Google Scholar 

  • Wong M., Ponticiello M., Kovanen V., Jurvelin J.S. 2000. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33:1049–1054.

    Article  PubMed  CAS  Google Scholar 

  • Woo S.L.-Y., Akeson W.H., Jemmott G.F. 1976. Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension. J. Biomech. 9:785–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Klisch, S.M., DiMicco, M.A., Hoger, A., Sah, R.L. (2003). Bioengineering the Growth of Articular Cartilage. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics