Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bücher, T. and M. Klingenberg. 1958. Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem. 70:552–570.

    Google Scholar 

  2. Schafer, F. Q. and G. R. Buettner. 2000. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30:1191–1212.

    Google Scholar 

  3. Sun, Y. and L. W. Oberley. 1996. Redox regulation of transcriptional activators. Free Radic Biol Med. 21:335–348.

    Article  CAS  PubMed  Google Scholar 

  4. Krebs, H. A. 1967. The redox state of nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Advances in Enzyme Regulation. 5:409–434.

    Article  CAS  PubMed  Google Scholar 

  5. Krebs, H. A. and T. Gascoyne. 1968. The redox state of the nicotinainide-adenine dinucleotides in rat liver homogenates. Biochem. J. 108:513–520.

    CAS  PubMed  Google Scholar 

  6. Krebs, H. A. and R. L. Veech. 1969. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes. Advances in Enzyme Regulation. 7:397–413.

    CAS  PubMed  Google Scholar 

  7. Koppenol, W. H. and J. Butler. 1985. Energetics of interconversion reactions of oxyradicals. Adv. Free Radic. Biol. Med. 1:91–131.

    CAS  Google Scholar 

  8. Farrington, J. A., M. Ebert, E. J. Land and K. Fletcher. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta. 314:372–381.

    CAS  PubMed  Google Scholar 

  9. Buettner, G. R. 1993. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys., 300:535–543.

    Article  CAS  PubMed  Google Scholar 

  10. Koppenol, W. H. 1997. The chemical reactivity of radicals. In: Free Radical Toxicology (Wallace, K.B., ed.), pp. 3–14, Taylor and Francis, London.

    Google Scholar 

  11. Clark, W. M. ed. 1960. Oxidation-Reduction Potentials of Organic Systems. Williams and Wilkens, Baltimore, MD.

    Google Scholar 

  12. Lardy, H. A. ed. 1949. Respiratory Enzymes. Burgess, Minneapolis, MN.

    Google Scholar 

  13. Burton, K. 1957. Free energydata of biological interest. Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol. 49:275.

    Google Scholar 

  14. Weber, G. 1961. Absorption bands and molar absorption coefficients of substances of biochemical interest. Biochemist’s Handbook. (Long, C. ed.), pp. 81–82, Spon. London.

    Google Scholar 

  15. Cleland, W. W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry. 3:480–482.

    Article  CAS  PubMed  Google Scholar 

  16. Rodkey, F. L. and J. A. Donovan. 1959. Oxidation-reduction potentials of the diphosphopyridine nucleotide system. J. Biol. Chem. 234:677–680.

    CAS  PubMed  Google Scholar 

  17. Ke, B. 1957. Polarographic behavior of a-lipoic acid. Biochim. Biophys. Acta. 25:650–651.

    Article  CAS  PubMed  Google Scholar 

  18. Aslund, F., K. D. Berndt and A. Holmgren. 1997. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem. 272:30780–30786.

    CAS  PubMed  Google Scholar 

  19. Gilbert, H. F. 1995. Thiol/disulfide exchange equilibria and disulfide bind stability. Methods in Enzymol. (Packer L. ed.) 251:8–28. Academic Press, San Diego, CA.

    Google Scholar 

  20. Fruton, J. S. and H. T. Clark. 1934. Chemical reactivity of cystine and its derivatives. J. Biol. Chem. 106:667–691.

    CAS  Google Scholar 

  21. Lowe, H. J. and W. M. Clark. 1956. Studies on oxidation-reduction. XXIV. Oxidation — reduction potentials of flavin adenine dinucleotide. J. Biol. Chem. 221:983–992.

    CAS  PubMed  Google Scholar 

  22. Burton, K. and T. H. Wilson. 1953. The free-energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol 1-phosphate. Biochem. J. 54:86.

    CAS  PubMed  Google Scholar 

  23. Williams, M. H. and J. K. Yandell. 1982. Outer-sphere electron transfer reactions of ascorbate anions. Aust. J. Chem. 35:1133–1144.

    CAS  Google Scholar 

  24. De Vries, S., J. A. Berden and E, C. Slater, 1980. Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain. FEBS Lett. 122:143–148.

    Article  PubMed  Google Scholar 

  25. Koppenol, W. H., J. J. Moreno, W. A. Pryor, H. Ischiropoulos and J. S. Beckman. 1992. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5:834–842

    Article  CAS  PubMed  Google Scholar 

  26. Gilbert, H. F. 1990. Molecular and cellular aspects of thiol-disulfide exchange. In Advances in Enzymology, (Meister, A., ed.), pp. 69–173, Wiley Interscience, New York.

    Google Scholar 

  27. Matthews, J. R., N. Wakasugi, J. L. Virelizier, J. Yodoi and R. T. Hay. 1992. Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulfide bond involving cysteine 62. Nucl. Acid Res. 20:821–3830.

    Google Scholar 

  28. Okamoto, T., H. Ogiwara, T. Hayashi, A. Mitsui, T. Kawabe and J. Yodoi. 1992. Human thioredoxin/adult T cell leukemia-derived factor activates the enhancer binding protein of human immunodeficiency virus type 1 by thiol redox control mechanism. Int. Immunol. 4:811–819.

    CAS  PubMed  Google Scholar 

  29. Veech, R. L., L. V. Eggleston and H. A. Krebs. 1969. The redox state of free nicotinamide-adenine dinuleotide phosphate in the cytoplasm of rat liver. Biochem. J. 155:609–619.

    Google Scholar 

  30. Kirlin, W. G., J. Cai, S. A. Thompson, D. Diaz, T. J. Kavanagh and D. P. Jones. 1999. Glutathione redoxpotential in response to differentiation and enzyme inducers. Free Radic. Biol. Med. 27:1208–1218.

    Article  CAS  PubMed  Google Scholar 

  31. Follmann H. and I. Haeberlein. (1995/1996). Thioredoxin: universal, yet specific thiol-disulfide redox cofactors. BioFactors. 5:147–156.

    CAS  PubMed  Google Scholar 

  32. Adler V., Y. Zhimin, K. D. Tew. and Z. Ronai Z. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 18:6104–6111.

    Article  CAS  PubMed  Google Scholar 

  33. Darzynkiewicz, Z., H. A. Crissman and J. P. Robinson eds. 1994. Methods in Cell Biology, 41 (Part A, Chap. 9), Flow Cytometry (2nd Edition). Academic Press, Inc, San Diego.

    Google Scholar 

  34. Musgrove, E. A. and D. W. Hedley. 1990. Measurement of intracellular pH. Methods in Cell Biology. 33:59–69.

    CAS  PubMed  Google Scholar 

  35. Keyman, R. T. and E. J. Cragoe. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schafer, F.Q., Buettner, G.R. (2003). Redox State and Redox Environment in Biology. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics