Skip to main content

Salinity, Halophytes and Salt Affected Natural Ecosystems

  • Chapter
Salinity: Environment - Plants - Molecules

Abstract

A high diversity of halophytes has evolved in predominantly arid regions. The mechanisms of salt resistance are manifold. Classification of halophyte types can be done by using various parameters. Ion ratios play an important role in adaptation of halophytes. Succulence is a special feature of halophytes, enhanced by salts in stem- as well as in leaf-succulents. Recretion of salts by salt-glands or bladders is another mechanism to cope with salinity. Natural saline ecosystems are occurring worldwide along coasts, but at inland sites are created predominantly in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, P. (1990) Saltmarsh Ecology, Cambridge Univ. Press.

    Google Scholar 

  • Albert, R. (1982) Halophyten, in H. Kinzel. (ed.), Pflanzenökologie und Mineralstoffwechsel, Ulmer, Stuttgart, pp. 33–215.

    Google Scholar 

  • Berger-Landefeldt, U. (1959) Beiträge zur Ökologie der Pflanzen nordafrikanischer Salzpfannen, Vegetatio 9, 1–48.

    Google Scholar 

  • Black, R.F. (1954) The leaf anatomy of Australian members of the genus Atriplex I. Atriplex vesicaria Heward and A. nummularia Lindl., Australian J. Botany 2, 269–286.

    Google Scholar 

  • Breckle, S.-W. (1976) Zur Ökologie und zu den Mineralstoffverhältnissen absalzender und nichtabsalzender Xerohalophyten, Diss.Bot., Cramer, Vaduz 35, 1–176.

    Google Scholar 

  • Breckle, S.-W. (1982) The significance of salinity, in B. Spooner and H.S. Mann (eds.), Desertification and development, dryland ecology in social perspective, Academic Press, pp. 277–292.

    Google Scholar 

  • Breckle, S.-W. (1986) Studies on halophytes from Iran and Afghanistan II. Ecology of halophytes along salt gradients, Proc. Roy. Soc. Edinburgh 89B, 203–215.

    Google Scholar 

  • Breckle, S.-W. (1990) Salinity tolerance of different halophyte types, in N. El Bassam et al. (eds.), Genetic aspects of plant nutrition, Kluwer, Dordrecht pp. 167–175.

    Google Scholar 

  • Breckle, S.-W. (1992) Salinity stress and salt-recretion in plants, Bielefelder Ökol. Beiträge 6, 39–52.

    Google Scholar 

  • Breckle, S.-W. (1995) How do halophytes overcome salinity, in: M.A. Khan and I. A. Ungar, Biology of salt tolerant plants, Karachi, pp. 199–213.

    Google Scholar 

  • Brownell, P.F. (1979) Sodium as an essential micronutrient element for plants and its possible role in metabolism, Advances in Botanical Research 7, 117–224.

    CAS  Google Scholar 

  • Caines, A.M. and Sherman, C. (1999) Interactice effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differung in Ca2+ use efficiency, Plant Physiol. Biochem. 37, 569–576.

    CAS  Google Scholar 

  • Carvajal, M., Cerda, A. and Martinez, V. (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol. 145, 439–447

    Article  CAS  Google Scholar 

  • Clarke, L.D. and Hannon, N.J. (1970) The mangrove swamp and salt marsh communities of the Sydney district III. Plant growth in relation to salinity and waterlogging, Journal of Ecology 56, 351–369.

    Google Scholar 

  • Cramer, G.R., Epstein, E. and Läuchli, A. (1991) Effects of sodium, potassium and calcium on salt-stressed barley II. Elemental analysis, Physiol. Plant. 81, 197–202.

    Article  CAS  Google Scholar 

  • Curtin, D., Steppuhn, H. and Selles, F. (1993) Plant response to sulfate and chloride salinity: growth and ionic relations, Soil Sci Soc. America J. 57, 1304–1310.

    CAS  Google Scholar 

  • Daehler, C.C., Anttila, C.K., Ayres, D.R., Strong, D.R. and Bailey, J.P. (1999) Evolution of a new ecotype of Spartina alterniflora (Poaceae) in San Francisco Bay, California, USA. Am.J.Bot. 86, 543–546.

    PubMed  Google Scholar 

  • Dierssen, K., Eischeid, I., Härdtle, W., Hagge, H., Kiehl, K., Körber, P., Twenhöven, F.L., Neuhaus, F. and Walter, J. (1991) Geobotanische Untersuchungen an den Küsten Schleswig-Holsteins, Ber. R. Tüxen-Ges. 3, 129–155.

    Google Scholar 

  • Dierssen, K. (1996) Vegetation Nordeuropas, Ulmer, Stuttgart, p. 838.

    Google Scholar 

  • Egan, T.P. and Ungar, I.A. (2000) Similarity between seed banks and above-ground vegetation along a salinity gradient, J. Veget. Science 11, 189–194.

    Google Scholar 

  • Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. and Paulissen, D. (1991) Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica 18, 1–248.

    Google Scholar 

  • Engel, R.E., Bruckner, P.L., Mathre, D.E. and Brumfield, S.K.Z. (1997) A chloride-deficient leaf spot syndrome of wheat, Soil Sci. Soc. America J. 61, 176–184.

    CAS  Google Scholar 

  • Epstein, E. (1980) Reponses of plants to saline environments, in D.W. Rains et al. (eds.), Genetic engeneering of osmoregulation, Plenum Press, New York, pp.7–21.

    Google Scholar 

  • Epstein, E. (1985) Salt-tolerant crops: origins development, and prospects of the concept, Plant Soil, 89, 187–198.

    Article  Google Scholar 

  • Epstein, E. (1998) How calcium enhances plant salt tolerance, Science 280, 1906–1907.

    Article  PubMed  CAS  Google Scholar 

  • Eshel, A. (1985) Response of Suaeda aegyptiaca to KC1, NaCl and Na2SO4 treatments. Phys. Plant. 64, 308–315.

    CAS  Google Scholar 

  • Flowers, T.J. and Yeo, A.R. (1995) Breeding for salinity resistance in crop plants: where next? Aust.J.Plant Physiol. 22, 875–884.

    Google Scholar 

  • Freitas, H. and Breckle, S.-W. (1993) Progressive cutinization in Atriplex bladder stalk cells, Flora 188, 287–290.

    Google Scholar 

  • Freitas, H. and Breckle, S.-W. (1994) Importance of bladder hairs for seedlings of some Atriplex species, Mésogée 53, 47–54.

    Google Scholar 

  • Frey-Wissling, A. (1935) Die Stoffausscheidung der Höheren Pflanzen, Springer, Berlin.

    Google Scholar 

  • García, L.V., Marañon, T., Moreno, A. and Clemente, L. (1993) Above-ground biomass and species richness in a Mediterranean salt marsh, J. Vegetation Science 4, 417–424.

    Google Scholar 

  • Glenn, E.P., Watson, M.C., O’Leary, J.W. and Axelson, R.D.(1992) Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4-halophyte Atriplex canescens, Plant, Cell and Environ. 15, 711–718.

    CAS  Google Scholar 

  • Glenn, E.P. and Brown, J.J. (1998) Effect of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil, Am. J. Bot. 85, 10–16.

    CAS  Google Scholar 

  • Grieve, C.M., Poss, J.A. (2000) Wheat response to interactive effects of boron and salinity, J.Plant Nutrition 23, 1217–1226.

    CAS  Google Scholar 

  • Gzik, A. (1996) Accumulation of proline and pattern of a-amino acids in sugar beet plants in response to osmotic, water and salt stress, Environm. Expt. Botany 36, 29–38.

    CAS  Google Scholar 

  • Hare, P.D. and Cress, W.A. (1997) Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regulation 21, 79–102.

    CAS  Google Scholar 

  • Hedenström, H.v. and Breckle, S.-W. (1974) Obligate halophytes? A test with tissue culture methods, Z. Pflanzenphys. 74, 183–185.

    Google Scholar 

  • Holloway, R.E. and Alston, A.M. (1992) The effects of salt and boron on growth of wheat, Aust. J. Agric. Res. 43, 987–1001.

    Article  CAS  Google Scholar 

  • Howard, R.J. and Mendelssohn, I.A. (1999) Salinity as a constraint on growth of oligohaline marsh macrophytes. Am. J. Bot. 86, 785–806.

    PubMed  Google Scholar 

  • Kafkafi, U. and Bernstein, N. (1996) Root growth under salinity stress, in Y. Waisel et al. (eds.), Plant roots, the hidden half, 2nd ed. Dekker, New York, pp. 435–451.

    Google Scholar 

  • Kearney, T.H., Briggs, L.J., Shantz, H.L., McLane, J.W. and Piemeisel, R.L. (1914) Indicator significance of vegetation in Tooele Valley, Utah, J. Agric. Res. 1, 365–417.

    Google Scholar 

  • Köhl, K.I. (1997) The effect of NaCl on growth, dry matter allocation and ion uptake in salt marsh and inland populations of Armeria maritima, New Phytol. 135, 213–225.

    Google Scholar 

  • Kreeb, K. (1974) Pflanzen an Salzstandorten, Naturwissenschaften 61, 337–343.

    Article  CAS  Google Scholar 

  • LaHaye, P.A. and Epstein, E. (1969) Salt toleration by plants: enhancement with calcium, Science 166, 395–396.

    Google Scholar 

  • Levitt, J. (1980) Responses of plants to environmental stresses, water, radiation, salt and other stresses, Acad. Press, New York.

    Google Scholar 

  • Liphschitz, N. and Waisel, Y. (1982) Adapatation of plants to saline environments: salt excretion and glandular structure, in D. Sen and K.S. Rajpurohit (eds.), Contributions to the ecology of halophytes, W. Junk, The Hague, Tasks for vegetation science 2, 197–214.

    Google Scholar 

  • Marcum, K.B., Anderson, S.J. and Engelke, M.C. (1998) Salt gland ion secretion: a salinity tolerance mechanism among five Zoysia grass species, Crop Science 38, 806–810.

    Google Scholar 

  • Marloth, R. (1887) Zur Bedeutung der Salz abscheidenden Drüsen der Tamariscineen, Ber. d. Deutschen Bot. Gesellsch. 5, 319–324.

    Google Scholar 

  • Matthuis, F.J.M. and Amtmann, A. (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios, Annals of Botany, 84, 123–133.

    Google Scholar 

  • Mirazai, N.A. and Breckle, S.-W. (1978) Untersuchungen an afghanischen Halophyten I. Salzverhältnisse in Chenopodiaceen Nord-Afghanistans, Bot. Jb. Syst. 99, 565–578.

    Google Scholar 

  • Munns, R. (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses, Plant, Cell and Environ. 16, 15–24.

    CAS  Google Scholar 

  • Munns, R., Greenway, H. and Kirst, G.O. (1983) Halotolerant eukaryots, in Lange et al. (eds.) Physiological Plant Ecology III. Responses to the Chemical and Biological Environment, Springer, Berlin, pp. 59–135.

    Google Scholar 

  • Munns, R., Schachtmann, D.P. and Condon, A.G. (1995) The significance of a two-phase growth response to salinity in wheat and barley, Aust. J. Plant Physiol. 22, 561–569.

    CAS  Google Scholar 

  • Naik, P.S. and Widholm, J.M. (1993) Comparison of tissue culture and whole plant response to salinity in potato, Plant Cell, Tissue and Organ Culture 33, 273–280.

    Article  CAS  Google Scholar 

  • Neumann, P. (1997) Salinity resistance and plant growth revisited, Plant, Cell and Environment, 20, 1193–1198.

    Article  CAS  Google Scholar 

  • Niu, X., Bresan, R.A., Hasegawa, P.M. and Pardo, J.M. (1995) Ion homeostasis in NaCl stress environments, Plant Physiol. 109, 735–742.

    PubMed  CAS  Google Scholar 

  • Osmond, B. (1979) Ion uptake, transport and excretion, in D.W. Goodall and R.A. Perry (eds.), International Biological Programme 16. Arid-land ecosystems 1, London, pp. 607–625.

    Google Scholar 

  • Osmond, B. (1980) Integration of photosynthetic carbon metabolism during stress, in D.W. Rains et al. (eds.), Genetic engeneering of osmoregulation, Plenum Press, New York, pp. 171–185.

    Google Scholar 

  • Pardossi, A., Malorgio, F., Oriolo, D., Gucci, R., Serra, G. and Tognoni, F. (1998) Water relations and osmotic adjustment in Apium graveolens during long-term NaCl stress and subsequent relief, Physiol. Plantar. 102, 369–376.

    CAS  Google Scholar 

  • Pasternak, D., Sagih, M., DeMalach, Y., Keren, Y. and Shaffer, A. (1995) Irrigation with brackish water under desert conditions XI. Salt tolerance in sweet-corn cultivars, Agric. water managem. 28, 325–334.

    Google Scholar 

  • Pollak, G., and Waisel, Y. (1979) Ecophysiology of salt excretion in Aeluropus litoralis (Gramineae), Physiol. Plant. 47, 177–184.

    CAS  Google Scholar 

  • Popp, M. (1985) Osmotic adaptation in Australian mangroves, Vegetatio 61, 247–253.

    Google Scholar 

  • Popp, M., Polania, J. and Weiper, M. (1993) Physiological adaptations to different salinity levels in mangrove, in H. Lieth and A. Al-Masoom, Towards the rational use of high salinity tolerant plants, I., Kluwer, Dordrecht pp. 217–224.

    Google Scholar 

  • Ramani, S. and Apte, S.K. (1997) Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cv. Bura Rata, Biochem. Biophys. Res. Comm. 233, 663–667.

    Article  PubMed  CAS  Google Scholar 

  • Reimann, C. (1992) Sodium exclusion by Chenopodium species, J. Expt. Bot. 43, 503–510.

    CAS  Google Scholar 

  • Reimann, C. and Breckle, S.-W. (1988) Salt secretion in some Chenopodium species, Flora 180, 289–296.

    Google Scholar 

  • Richards, L.A. (ed.) (1954) Diagnosis and improvement of saline and alkali soils, Agriculture Handbook 60, US Dept. Agric., Washington

    Google Scholar 

  • Rozema, J. (1976) An ecophysiological study on the response to salt of four halophytic and glycophytic Juncus species, Flora 165, 197–209.

    CAS  Google Scholar 

  • Schirmer, U. and Breckle, S.-W. (1982) The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex-species), in D.N. Sen and K.S. Rajpurohit (eds.) Contributions to the ecology of halophytes, Tasks for vegetation science 2, 215–231.

    Google Scholar 

  • Shalhevet, J., Huck, M.G. and Schroeder, B.P. (1995) Root and shoot growth responses to salinity in maize and soybean. Agronomy J. 87, 512–516.

    Google Scholar 

  • Shomer-Ilan, A. and Waisel, Y. (1986) Effects of stabilizing solutes on salt activation of phosphoenolpyruvate carboxylase from various plant sources. Physiol. Plant. 67, 408–414.

    CAS  Google Scholar 

  • Shomer-Ilan, A., Nissenbaum, A. and Waisel, Y. (1981) Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel, Oecologia 48, 244–248.

    Article  Google Scholar 

  • Sitaramam, V. and Madhavarao, C.N. (1997) The energetic basis of osmotolerance in plants: physical principles, J. theor. Biol 189, 333–352.

    Article  PubMed  Google Scholar 

  • Solomon, A., Beer, S., Wäisel, Y., Jones, G.P., and Paleg, L.G. (1994) Efects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol. Plant. 90, 198–204.

    Article  CAS  Google Scholar 

  • Sonneveld, C. and Kreij, C. de (1999) Response of cucumber (Cucumis sativa L.) to an unequal distribution of salts in the root environment, Plant Soil 209, 47–56.

    Article  CAS  Google Scholar 

  • Stocker, O. (1928) Das Halophytenproblem, Ergeb. Biologie 3, 265–353.

    Google Scholar 

  • Storey, R. and Wyn-Jones, R.G. (1979) Responses of Atriplex spongiosa and Suaeda monoica to salinity, Plant Physiology 63, 156–162.

    CAS  Google Scholar 

  • Stroganov, B.P. (1964) Physiological basis of salt tolerance of plants, Israel Program for Scient. Translations, Jerusalem.

    Google Scholar 

  • Suarez, N., Sobrado, MA. and Medina, E. (1998) Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans (L.) seedlings, Oecologia 114, 299–304.

    Google Scholar 

  • Sun, D. and Dickinson, G.R. (1995) Survival and growth of a number of Australian tree species planted on a saline site in tropical north Australia, J. Appl. Ecology 32, 817–826.

    Google Scholar 

  • Tomlinson, P.B. (1986) The botany of mangroves, Cambridge Univ. Press.

    Google Scholar 

  • Tremblin, G. et Ferard, G. (1994) Croissance et accumulation de sels chez Halopeplis amplexicaulis (Vahl.) Ung. cultivé à différentes salinités, Acta Oecologica 15, 355–364.

    Google Scholar 

  • Ungar, I.A. (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae), Am. J. Bot. 83, 604–607.

    Google Scholar 

  • Vernberg, F.J. (1993) Salt-marsh processes: a review, Environm. Toxicol. Chemistry 12, 2167–2195.

    Google Scholar 

  • Veste, M. and Breckle, S.-W. (1995) Xerohalophytes in a sandy desert ecosystem, in M.A. Khan and I.A. Ungar, Biology of salt tolerant plants, Karachi, pp. 161–165.

    Google Scholar 

  • Volkens, G. (1884) Die Kalkdrüsen der Plumbagineen. Ber. d. Deutschen Bot. Gesellsch. 2, 334–342.

    Google Scholar 

  • Waisel, Y. (1972) Biology of Halophytes, Acad. Press, New York & London.

    Google Scholar 

  • Waisel, Y. (1989) Screening for salt resistance, Proc 21st Colloqu. Int. Potash Institute, Bern, 143–155.

    Google Scholar 

  • Waisel, Y. (1992) How to cope with a low CO2 stress? A new interpretation of an old observation, Bielefelder Ökol. Beiträge 6, 33–38.

    Google Scholar 

  • Waisel, Y and Breckle, S.-W. (1987) Differences in responses of various radish roots to salinity, Plant Soil 104, 191–194.

    Google Scholar 

  • Waisel, Y., Eshel, A.. and Agami, M. (1986) Salt balance of leaves of the mangrove Avicennia marina, Physiol. Plant. 67, 67–72.

    CAS  Google Scholar 

  • Walter, H. (1968) Die Vegetation der Erde in ökophysiologischer Betrachtung. II. Die gemäßigten und arktischen Zonen, Fischer, Stuttgart 1001 p.

    Google Scholar 

  • Walter, H. and Breckle, S.-W. (1986) Ecological systems of the geobiosphere, Springer, Berlin.

    Google Scholar 

  • Walter, H, and Breckle, S.-W. (1991) Ökologie der Erde, 2. Aufl., Fischer, Stuttgart.

    Google Scholar 

  • Wang, X.Y., Suhayda, C.G. and Redmann, R.E. (1992) Identification of physiological ecotypes in Hordeum jubatum based on responses to salinity stress, Canad. J. Bot. 70, 1123–1130.

    Google Scholar 

  • Wendelberger, G. (1950) Zur Soziologie der kontinentalen Halophytenvegetation Mitteleuropas. Denkschr. Akad. Wiss. 108 (5), 1–180.

    Google Scholar 

  • Wiehe, W. (1986) Untersuchungen zur Salzrekretion bei ausgewählten Limonium-Arten, Diploma-Thesis Univ. Bielefeld, 136pp.

    Google Scholar 

  • Wiehe, W. and Breckle, S.-W. (1989) Die Ontogenese der Salzdrüsen von Limonium (Plumbaginaceae), Botanica Acta 103, 107–110.

    Google Scholar 

  • Wilson, C., Lesch, S.C. and Grieve, C.M. (2000) Growth stage modulates salinity tolerance of New Zealand Spinach (Tetragonia tetragonoides, Pall.) and Red Orach (Atriplex hortensis L.), Annals of Botany 85, 501–509.

    Article  CAS  Google Scholar 

  • Winicov, I. and Bastola, D.R. (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation, Acta Physiol. plantar. 19, 435–449.

    CAS  Google Scholar 

  • Wyn-Jones, R.G., Storey, R.A, Leigh, R.A., Ahmed, N. and Pollard, A (1977) A hypothesis on cytoplasmic osmoregulation, in E. Marré et al. (eds.) Regulation of cell membrane activities in plants, Elsevier, Amsterdam, pp.121–136.

    Google Scholar 

  • Yeo, A.R. (1983) Salinity resistance: physiology and prices, Physiol. Plant. 58, 214–222.

    CAS  Google Scholar 

  • Youngman, A.L. and Heckathorn, S.A (1992) Effect of salinity on water relations of two growth forms of Suaeda calceoliformis, Funct. Ecol. 6, 686–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Breckle, SW. (2002). Salinity, Halophytes and Salt Affected Natural Ecosystems. In: Läuchli, A., Lüttge, U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48155-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0492-6

  • Online ISBN: 978-0-306-48155-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics