Skip to main content

Density Functional Theory of Quantum Dots in A Magnetic Field

  • Chapter
Atoms and Molecules in Strong External Fields
  • 230 Accesses

Conclusions

To summarize the main content of this talk:

  1. (1)

    We have reviewed the papers demonstrating a broad applicability of DFT to the calculation of ground-state properties and level crossings in quantum dot “atoms” in magnetic field.

  2. (2)

    A specific problem — the calculation of the region of stability of the maximum density droplet — has been studied. The results are in qualitative agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ashoori, Nature, 379, 413 (1996), and references therein.

    Article  ADS  Google Scholar 

  2. T. Chakraborty, Comm. on Cond. Matt. Phys. 16, 35 (1992), and references therein.

    Google Scholar 

  3. M. A. Kastner, Rev. Mod. Phys., 64, 849 (1992); Comm. on Cond. Matt. Phys., 17, 349 (1996).

    Article  ADS  Google Scholar 

  4. L. Brey et al., Phys. Rev. B 40, 10647 (1989); ibid. 42, 1240 (1990); S. K. Yip, Phys. Rev. B 43, 1707 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. C. Ashoori et al., Phys. Rev. Lett. 68, 3088 (1992); 71, 613 (1993).

    Article  ADS  Google Scholar 

  6. P. L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991).

    Article  ADS  Google Scholar 

  7. S.-R. E. Yang, A. H. MacDonald, and M. D. Johnson, Phys. Rev. Lett. 71, 3194 (1993).

    Article  ADS  Google Scholar 

  8. M. Ferconi, Ph.D Thesis, University of Missouri-Columbia, 1995.

    Google Scholar 

  9. S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  10. V. Fock, Z. Physik 47, 446 (1928); C. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930).

    Article  MATH  ADS  Google Scholar 

  11. P. L. McEuen et al., Phys. Rev. B 45, 11419 (1992).

    Article  ADS  Google Scholar 

  12. A. H. MacDonald, S. R. Eric Yang, and M. D. Johnson, Aust. J. Phys. 46, 345 (1993).

    ADS  Google Scholar 

  13. C. de Chamon and X.-G. Wen, Phys. Rev. B 49, 8227 (1994).

    Article  ADS  Google Scholar 

  14. M. Ferconi, M. R. Geller, and G. Vignale, Phys. Rev. B 52, 16357 (1995).

    Article  ADS  Google Scholar 

  15. P. A. Maksym, and T. A. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).

    Article  ADS  Google Scholar 

  16. P. Hawrylak and D. Pfannkuche, Phys. Rev. Lett. 70, 485 (1993).

    Article  ADS  Google Scholar 

  17. F. Bolton and U. Rössler, Superlatt. and Microstructures, 13, 139 (1993).

    Article  ADS  Google Scholar 

  18. J. J. Palacios et al., Phys Rev. B 50, 5760 (1994).

    Article  ADS  Google Scholar 

  19. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  20. L. Brey, Phys. Rev. B 50, 11861 (1994).

    Article  ADS  Google Scholar 

  21. D. B. Chklovskii, Phys. Rev. B 51, 9895 (1995).

    Article  ADS  Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1965); W. Kohn and L. Sham, ibid. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  23. M. Macucci et al., Phys. Rev. B 48, 17354 (1993).

    Article  ADS  Google Scholar 

  24. M. Ferconi and G. Vignale, Phys. Rev. B 50, 14722 (1994).

    Article  ADS  Google Scholar 

  25. O. Heinonen, M. I. Lubin, and M. D. Johnson, Phys. Rev. Lett. 75, 4110 (1995).

    Article  ADS  Google Scholar 

  26. T. H. Stoof and Gerri E. W. Bauer, Phys. Rev. B 52, 12143 (1995).

    Article  ADS  Google Scholar 

  27. M. Ferconi and G. Vignale, Phys. Rev. B (to be published).

    Google Scholar 

  28. O. Klein, C. de Chamon, D. Tang, D. M. Abusch-Magder, U. Meirav, X.-G. Wen, and M. Kastner, Phys. Rev. Lett. 74, 785 (1995).

    Article  ADS  Google Scholar 

  29. O. Klein, D. Goldhaber-Gordon, C. de Chamon, and M. A. Kastner, Phys. Rev. B 53, R4221 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ferconi, M., Vignale, G. (2002). Density Functional Theory of Quantum Dots in A Magnetic Field. In: Schmelcher, P., Schweizer, W. (eds) Atoms and Molecules in Strong External Fields. Springer, Boston, MA. https://doi.org/10.1007/0-306-47074-8_37

Download citation

  • DOI: https://doi.org/10.1007/0-306-47074-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45811-8

  • Online ISBN: 978-0-306-47074-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics