Skip to main content
  • 961 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal D. P. and Goedde H. W., Pharmacogenetics of alcohol dehydrogenase, in W. Kalow (ed.), Pharmacogenetics of Drug Metabolism, Pergamon, New York, 1992, pp. 263–280.

    Google Scholar 

  • Agrawal A. K. and Shapiro B. H., Gender, age and dose effects of neonatally administered aspartate on the sexually dimorphic plasma growth hormone profiles regulating expression of the rat sex-dependent hepatic CYP isoforms, Drug Metab. Dispos. 25: 1249–1256, 1997.

    PubMed  CAS  Google Scholar 

  • Baijal P. K. and Fitzpatrick D. W., Effect of dietary protein on hepatic and extrahepatic phase I and phase II drug metabolizing enzymes, Toxicol. Lett. 89: 99–106, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Barry M. and Feely J., Enzyme induction and inhibition, Pharmacol. Ther. 48: 71–94, 1990.

    Article  PubMed  Google Scholar 

  • Beaune P. et al., Comparison of monooxygenase activities and cytochrome P450 isozyme concentrations in human liver microsomes, Drug Metab. Dispos. 14: 437–442 1986.

    PubMed  CAS  Google Scholar 

  • Benedetti M. S. and Tipton K. F., Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics, J. Neural. Transm. 52: 149–171, 1998.

    Google Scholar 

  • Bertilsson, L., Geographycal/interracial differences in polymorphic drug oxidation, current state of knowledge of cytochrome P450 (CYP) 2D6 and 2C19, Clin. Pharmacokinet. 29: 192–209, 1995.

    PubMed  CAS  Google Scholar 

  • Birkett D. J. et al., in vitro approaches can predict human drug metabolism, Trends Pharmacol. Sci. 14: 292–294, 1993.

    Article  CAS  Google Scholar 

  • Bourri&é M. et al., Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes, J. Pharmacol. Exp. Ther. 277: 321–332, 1996.

    Google Scholar 

  • Burchell B. and Coughtrie M. W. H., UDP-glucuronosyl transferases, Pharmacol. Ther. 43: 261–289, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Burchell B. et al., Specificity of human UDP-glucuronosyl transferases and xenobiotic glucuronidation, Life Sci. 57: 1819–1831, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J. et al., An introduction to drug disposition: the basic principles of absorption, distribution, metabolism and excretion, Toxicol. Pathol. 23: 102–114, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Cashman J. R., Structural and catalytic properties of the mammalian flavin-containing monooxygenase, Chem. Res. Toxicol. 8: 166–181, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Chauret N. et al., Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes, Drug Metab. Dispos. 26: 1–4, 1998.

    PubMed  CAS  Google Scholar 

  • Clarke D. J. and Burchell B., The uridine diphosphate glucuronosyltransferase multigene family: function and regulation, in F. C. Kauffman (ed.), Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 3–43.

    Google Scholar 

  • Connelly J. C. and Bridges J. W., The distribution and role of cytochrome P450 in extrahepatic organs, in J. W. Bridges and L. F. Chasseaud (eds.), Progress in Drug Metabolism, Vol. 5, John Wiley & Sons, Chichester, 1980, pp. 1–112.

    Google Scholar 

  • Coughtrie M. W. H. et al., Biology and function of the reversible sulfation pathway catalyzed by human sulfotransferases and sulfatases, Chem. Biol. Interact. 109: 3–27, 1998.

    PubMed  CAS  Google Scholar 

  • Daly A. K. et al., Metabolic polymorphisms, Pharmac. Ther. 57: 129–160, 1993.

    CAS  Google Scholar 

  • Daly A. K., Molecular basis of polymorphic drug metabolism, J. Mol. Med. 73: 539–553, 1995.

    Article  PubMed  CAS  Google Scholar 

  • DeGroot M. J. and Vermeulen N. P. E., Modeling the active site of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes, Drug Metab. Rev. 29: 747–799, 1997.

    CAS  Google Scholar 

  • de Kanter R. et al., A rapid and simple method for cryopreservation of human liver slices, Xenobiotics 28: 225–234, 1998.

    Google Scholar 

  • de Waziers L. et al., Cytochrome P450 isoenzymes, epoxide hydrolase glutathione transferases in rat and human hepatic and extrahepatic tissues, J. Pharmacol. Exp. Ther. 253: 387–394, 1990.

    PubMed  Google Scholar 

  • Ekins S., Past, present, and future applications of precision-cut liver slices for in vitro xenobiotic metabolism, Drug Metab. Rev. 28: 591–623, 1996.

    PubMed  CAS  Google Scholar 

  • Gelbonin H. V., Cytochrome P450 and monoclonal antibodies, Pharmacol. Rev. 45: 413–453, 1993.

    Google Scholar 

  • George J. et al., Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver diseases, Hepatology 21: 120–128, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gleiter C. H. and Gundert-Remy U., Gender differences in pharmacokinetics, E. J. Metab. Pharmacokinet. 21: 123–128, 1996.

    CAS  Google Scholar 

  • Goedde H. W. and Agarwal D. P., Pharmacogenetics of aldehyde dehydrogenase, in W. Kalow (ed.), Pharmacogenetics of Drug Metabolism, Pergamon, New York, 1992, pp. 281–311.

    Google Scholar 

  • Gonzalez F. J., Human cytochrome P450 problems and prospects, Trends Pharmacol. Sci. 13: 346–352, 1992

    Article  PubMed  CAS  Google Scholar 

  • Guder W. G. and Ross B. D., Enzyme distribution along the nephron, Kidney Int. 26: 101–111, 1984.

    PubMed  CAS  Google Scholar 

  • Guengerich F. P., Influence of nutrients and other dietary materials on cytochrome P-450 enzymes, Am. J. Clin. Nutr. 61 (Suppl): 651S–658S, 1995.

    PubMed  CAS  Google Scholar 

  • Guengerich F. P., in vitro techniques for studying drug metabolism, J. Pharmacokinet. Biopharm. 24: 521–533, 1996.

    PubMed  CAS  Google Scholar 

  • Guengerich F. P. et al., New applications of bacterial systems to problems intoxicology, Crit.Rev. 551–583, 1996.

    Google Scholar 

  • Halpert J. R. et al., Contemporary issues in toxicology: selective inhibitors of cytochromes P450, Toxicol. Appl. Pharmacol. 125: 163–175, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. Z. et al., Gender effects in pharmacokinetics and pharmacodynamics, Drugs 50: 222–239, 1995.

    PubMed  CAS  Google Scholar 

  • Hawksworth G. M., Advantages and disadvantages of using human cells for pharmacological and toxicological studies, Human Exp. Toxicol. 13: 568–573, 1994.

    Article  CAS  Google Scholar 

  • Hayball P. J., Formation and reactivity of acyl glucuronides: the influence of chirality, Chirality 7: 1–9, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ilett K. F. et al., Metabolism of drugs and other xenobiotics in the gut lumen and wall, Pharmacol. Ther. 46: 67–93, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kaminsky L. S. and Fasco M. J., Small intestinal cytochromes P450, Crit. Rev Toxicol. 21: 407–422, 1992.

    CAS  Google Scholar 

  • Kaspersen F. M. and Van Boeckel C. A. A,, A review of the methods of chemical synthesis of sulphate and glucuronide conjugates, Xenobiotica 17: 1451–1471, 1987.

    PubMed  CAS  Google Scholar 

  • Kauffman F. C., Regulation of drug conjugate production by futile cycling in intact cells, in F. C. Kauffman (ed.), Conjugation-Deconjugation Reactions in Drug Metabolism andToxicity, Springer-Verlag, New York, 1994, pp. 247–255.

    Google Scholar 

  • Kawalek J. C. and Andrews A. W., The effect of solvents on drug metabolism in vitro, Drug Metab. Dispos. 8: 380–384, 1980.

    PubMed  CAS  Google Scholar 

  • Krishna D. R. and Klotz U., Extrahepatic metabolism of drugs in humans, Clin. Pharmacokinet. 26: 144–160, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lohr J. W. et al., Renal drug metabolism, Pharmacol. Rev. 50: 107–141, 1998.

    PubMed  CAS  Google Scholar 

  • Meyer U. A,, Overview of enzymes of drug metabolism, J. Pharmacokinet. Biopharm. 24(5):449–459, 1996.

    PubMed  CAS  Google Scholar 

  • Mugford C. A. and Kedderis G. L., Sex-dependent metabolism of xenobiotics, Drug Metab. Rev. 30: 441–498, 1998.

    PubMed  CAS  Google Scholar 

  • Mugford C. A. et al., 1-Aminobenzotirazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague-Dawley rats. Fund. Appl. Toxicol. 19: 43–49, 1992.

    Article  CAS  Google Scholar 

  • Mulder G. J., Glucuronidation and its role in regulation of biological activity of drugs, Ann. Rev. Pharmacol. Toxicol. 32: 25–49, 1992.

    CAS  Google Scholar 

  • Musson D. G. et al., Assay methodology for quantitation of the ester and ether glucuronide conjugates of difflunisal in human urine, J. Chromatogr. 337: 363–378, 1985.

    PubMed  CAS  Google Scholar 

  • Nedelcheva V. and Gut I., P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer, Xenobiotica 24: 1151–1175, 1994.

    PubMed  CAS  Google Scholar 

  • Nelson D. R., P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature, Pharmacogenetics 6: 1–42, 1996.

    PubMed  CAS  Google Scholar 

  • Newton D. J. et al., Cytochrome P450 inhibitors: evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes, Drug Metab. Dispos. 23: 154–158, 1995.

    PubMed  CAS  Google Scholar 

  • Okey A. B., Enzyme induction in the cytochrome P-450 system, Pharmacol. Ther. 45: 241–298, 1990.

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony M. S. and Woodhouse K. W., Age, environmental factors and drug metabolism, Pharmacol. Ther. 61: 279–287, 1994.

    PubMed  CAS  Google Scholar 

  • Park B. K., in vivo methods to study enzyme induction and enzyme inhibition, Pharmacol. Ther. 33: 109–113, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson A,, Biotransformation of xenobiotics, in C. D. Klaassen (ed.), Casarett & Doull’s Toxicology: The Basic Science of Poisons, 5th Ed., McGraw-Hill, New York, 1996a, pp. 113–186.

    Google Scholar 

  • Parkinson A,, An overview of current cytochrome P450 technology for assessing the safety and efficacy of new materials, Toxicol. Pathol. 24: 45–57, 1996b.

    Article  CAS  Google Scholar 

  • Pearce R. E. et al., Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity, Arch. Biochem. Biophys. 331: 145–169, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Perrier D. et al., Effect of product inhibition on kinetics of drug elimination, J. Pharmacokinet. Biopharm. 1: 231–242, 1973.

    CAS  Google Scholar 

  • Price R. J. et al., Influence of slice thickness and culture conditions on the metabolism of 7-ethoxycoumarin in precision-cut rat liver slices, ATLA 26: 541–548, 1998.

    Google Scholar 

  • Ravindranath V. and Boyd M. R., Xenobiotic metabolism in brain, Drug Metab. Rev. 27: 419–448, 1995.

    PubMed  CAS  Google Scholar 

  • Remmel R. P. and Burchell B., Validation and use of cloned, expressed human drug-metabolizing enzymesms in heterologous cells for analysis of drug metabolism and drug-drug interactions, Biochem. Pharmacol. 46: 559–566, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rendic S. and DiCarlo F. J., Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors, Drug Metab. Rev. 29: 413–580, 1997.

    PubMed  CAS  Google Scholar 

  • Rodrigues A. D., Use of in vitro human metabolism studies in drug development: an industrial perspective, Biochem. Pharmacol. 48: 2147–2156, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Satoh T. and Hosokawa M., The mammalian carboxyesterases: from molecules to functions, Ann. Rev. Pharmacol. Toxicol. 38: 257–288, 1998.

    Article  CAS  Google Scholar 

  • Schwenk M., Mucosal biotransformation, Toxicol. Pathol. 16: 138–146, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Shimada T. et al., Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians, J. Pharmacol. Exp. Ther. 210: 414–422, 1994.

    Google Scholar 

  • Shimojo N., Cytochrome P450 changes in rats with streptozocin-induced diabetes, Int. J. Biochem. 26: 1261–1268, 1994.

    PubMed  CAS  Google Scholar 

  • Silva J. M. et al., Refinement of an in vitro cell model for cytochrome P450 induction, Drug Metab. Dispos. 26: 490–496, 1998.

    PubMed  CAS  Google Scholar 

  • Skett P., Biochemical basis of sex differences in drug metabolism, Pharmacol. Ther. 38: 269–304, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Skett P., Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing-solutions, in Vitro Toxicol. 8: 491–504, 1994.

    CAS  Google Scholar 

  • Smith C. A. D. et al., Genetic polymorphisms in xenobiotic metabolism, Eur. J. Cancer 30A: 1921–1935, 1994.

    PubMed  CAS  Google Scholar 

  • Smith D. A., Species differences in metabolism and pharmacokinetics: are we close to an understanding? Drug Metab. Rev. 23: 355–373, 1991.

    PubMed  CAS  Google Scholar 

  • Smith D. A. and Jones B. C., Speculations on the substrate structural-activityrelationships (SSAR) of cytochrome P450 enzymes, Biochem. Pharmacol. 44: 2089–2098, 1992.

    PubMed  CAS  Google Scholar 

  • Smith D. A., Chemistry and enzymology: their use in the prediction of human drug metabolism, Eur. J. Pharm. Sci. 2: 69–11, 1994a.

    Article  CAS  Google Scholar 

  • Smith D. A., Design of drugs through a consideration of drug metabolism and pharmacokinetics, Eur. J. Drug Metab. Pharmacokinet. 3: 193–199, 19946.

    Google Scholar 

  • Smith P. C. et al., Irreversible binding of Zomepirac to plasma protein in vitro and in vivo, J. Clin. Invest. 77: 934–939, 1986.

    PubMed  CAS  Google Scholar 

  • Soucek P. and Gut I., Cytochromes P450 in rats: structure, functions, properties and relevant human forms, Xenobiotica 22: 83–103, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Thummel K. E., Use of midazolam as a human cytochrome P450 3A probe: II characterization of inter-and intraindividual hepatic CYP3A variability after liver transplantation, J. Pharmacol. Exp. Ther. 271: 557–566, 1994.

    PubMed  CAS  Google Scholar 

  • van der Aar E. M. et al., Strategies to characterize the mechanisms of action and the active sites of glutathione S-transferases: a review, Drug Metab. Rev. 30: 569–643, 1998.

    PubMed  Google Scholar 

  • Vatsis K. P. and Weber W. W., Human N-acetyltransferases, in F. C. Kauffman (ed.), Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 109–130.

    Google Scholar 

  • Vickers A. E. M., Liver slices: an in vitro tool to predict drug biotransformation and to support risk assessment, In Vitro Toxicol. 10: 71–80, 1997.

    CAS  Google Scholar 

  • Watt J. A. et al., Contrasting systemic stabilities of the acyl and phenolic glucuronides of diflunisal in the rat, Xenobiotica 2: 403–415, 1991.

    Google Scholar 

  • Weinshilboum S. and Aksoy I., Sulfation pharmacogenetics in humans, Chem. Biol. Interact. 92: 233–246, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum S. and Otterness D., Sulfotransferase enzymes, in F. C. Kauffman (ed.), Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 45–78.

    Google Scholar 

  • Williams F. M., Serum enzymes of drug metabolism, Pharmacol. Ther. 34: 99–109, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Williams L. et al., The influence of food on the absorption and metabolism of drugs: an update, E. J. Drug Metab. Pharmacokinet. 21: 201–211, 1996.

    CAS  Google Scholar 

  • Wrighton S. A. and Stevens J. C., The human hepatic cytochrome P450 involved in drug metabolism, Crit. Rev. Toxicol. 22: 1–21, 1992.

    PubMed  CAS  Google Scholar 

  • Wrighton S. A. et al., in vitro methods for assessing human hepatic drug metabolism: their use in drug development, Drug Metab. Rev. 25: 453–484, 1993.

    PubMed  CAS  Google Scholar 

  • Zhang Q-Y. et al., Characterization of rat small intestinal cytochrome P450 composition and inducibility, Drug Metab. Dispos. 24: 322–328, 1996.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Metabolism. In: Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists. Springer, Boston, MA. https://doi.org/10.1007/0-306-46820-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46820-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46234-4

  • Online ISBN: 978-0-306-46820-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics