Skip to main content

Historical Background, Development and Preparation of Nanomaterials

  • Chapter
  • First Online:
Nanotechnology

Abstract

Nanotechnology has developed as a field of science with broad applications in different fields. The reduction of particle size and tuning the particle morphology of materials from micro- to nanosize leads to the unique properties and helps in versatile applications. The reason for the nanomaterials (NMs) to exhibit enhanced properties is due to the large surface-to-volume ratio and quantum confinement effect. It is therefore imperative to understand the history, background, physico-chemical nature before its usage. In this chapter, the overall overview of history and development of nanoparticles are discussed in detail. People have learned the way to produce bread, fabric, wine and cheese since ancient times when the process of fermentation was crucial. Secrets of ancient nano-production in many instances simply passed from generation to generation, without going into the reasons why the materials and products obtained from them acquired their specific properties. The development and preparation of nanomaterials some pre-conditions required for the specific preparation of nano-products. Various methods are used for the preparation of nanomaterials like chemical vapor deposition, hydrothermal method, hydrolysis, chemical engineers (heterogeneous catalysis) and biological route, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeila, A.S.S., et al.: Nanoparticles—the future of drug delivery. J. Pharmaceutical Res. 9 (2019)

    Google Scholar 

  2. Ahmad, A., et al.: Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1, 47–53 (2005)

    Article  Google Scholar 

  3. Bazylinski, D.A., et al.: Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24, 465–475 (2007)

    Article  Google Scholar 

  4. Cao, A., et al.: Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 12, 13499–13510 (2010)

    Article  Google Scholar 

  5. Chaturvedi, S., et al.: Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16, 307–325 (2012)

    Article  Google Scholar 

  6. Gan, Y.X., et al.: Hydrothermal Synthesis of Nanomaterials. Hindawi (2020)

    Google Scholar 

  7. Ganachari, S.V., et al.: Synthesis techniques for preparation of nanomaterials. In: Handbook of Ecomaterials. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48281-1_149-1

  8. Initiative, N.N., What’s so special about the nanoscale. Retrieved from Nanotech. 2018.

    Google Scholar 

  9. Koo, O.M., et al.: Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed. Nanotechnol. Biol. Med. 1, 193–212 (2005)

    Google Scholar 

  10. Kowshik, M., et al.: Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 78, 583–588 (2002)

    Article  Google Scholar 

  11. Mariotti, D., et al.: Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Processes Polym. 9, 1074–1085 (2012)

    Article  Google Scholar 

  12. Niederberger, M.: Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2007)

    Article  Google Scholar 

  13. Rajput, N.: Methods of preparation of nanoparticles—a review. Int. J. Adv. Eng. Technol. 7, 1806 (2015)

    Google Scholar 

  14. Rao, B.G., et al.: Novel approaches for preparation of nanoparticles. In: Nanostructures for Novel Therapy, pp. 1–36. Elsevier, Amsterdam (2017).

    Google Scholar 

  15. Rao, C., et al.: Soft chemical approaches to inorganic nanostructures. Pure Appl. Chem. 78, 1619–1650 (2006)

    Article  Google Scholar 

  16. Revati, K., Pandey, B.: Microbial synthesis of iron-based nanomaterials—a review. Bull. Mater. Sci. 34, 191–198 (2011)

    Article  Google Scholar 

  17. Roh, Y., et al.: Metal reduction and iron biomineralization by a psychrotolerant Fe (III)-reducing bacterium, Shewanella sp. strain PV-4. Appl. Environ. Microbiol. 72, 3236–3244 (2006)

    Google Scholar 

  18. Roh, Y., et al.: Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J. Nanosci. Nanotechnol. 6, 3517–3520 (2006)

    Article  Google Scholar 

  19. Sayago, I., et al.: Preparation of tin oxide nanostructures by chemical vapor deposition. In: Tin Oxide Materials, pp. 247–280. Elsevier, Amsterdam

    Google Scholar 

  20. Schauermann, S., et al.: Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc. Chem. Res. 46, 1673–1681 (2013)

    Article  Google Scholar 

  21. Sharma, N., et al.: Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403 (2015)

    Article  ADS  Google Scholar 

  22. Srivastava, P., et al.: Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK 3. Extremophiles 17, 821–831 (2013)

    Article  Google Scholar 

  23. Wang, Y, Li, Y.: Template-free preparation and photocatalytic and photoluminescent properties of Brookite TiO2 hollow spheres. J. Nanomater. (2019)

    Google Scholar 

  24. Wong, S.L.: Chemical vapor deposition growth of 2D semiconductors. In: 2D Semiconductor Materials and Devices, pp. 81–101. Elsevier, Amsterdam

    Google Scholar 

  25. Wu, R., et al.: Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater Sci. 72, 1–60 (2015)

    Article  Google Scholar 

  26. Yeary, L.W., et al.: Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Trans. Magn. 41, 4384–4389 (2005)

    Article  ADS  Google Scholar 

  27. Zhu, J., et al.: Waste utilization of synthetic carbon quantum dots based on tea and peanut shell. J. Nanomater. (2019)

    Google Scholar 

  28. Dowling, A.P.: Development of nanotechnology. Mater. Today 30–35 (2004)

    Google Scholar 

  29. Zhu, H., et al.: Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10(6), 713–717 (2008)

    Article  Google Scholar 

  30. Tolochko, N.K.: History of nanotechnology. In: Nanoscience and Nanotechnologies. Eolss Publishers, Oxford. https://www.eolss.net

  31. Roy, D.N., et al.: Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology? Xenobiotica 47, 632–643 (2017)

    Article  Google Scholar 

  32. Brunner, T.J., et al.: In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006)

    Article  ADS  Google Scholar 

  33. Cassee, F.R., et al.: Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation Toxicol. 25, 802–812 (2013)

    Article  Google Scholar 

  34. Lahde, A., et al.: In vitro evaluation of pulmonary deposition of airborne volcanic ash. Atmos. Environ. 70, 18–27 (2013)

    Article  ADS  Google Scholar 

  35. Murr, L.E., Guerrero, P.A.: Carbon nanotubes in wood soot. Atmosph. Sci. Lett. 7:93–95 (2006)

    Google Scholar 

  36. Wu, C.Y., et al.: Formation and characteristics of biomimetic mineralo-organic particles in natural surface water. Sci. Rep. 6 (2016)

    Google Scholar 

  37. Blanco-Andujar, C., et al.: Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. J. Mater. Chem. 22, 12498–12506 (2012)

    Article  Google Scholar 

  38. Cho, M.H., et al.: Redox-responsive manganese dioxide nanoparticles for enhanced MR imaging and radiotherapy of lung cancer. Front. Chem. 5 (2017)

    Google Scholar 

  39. Song, S.Q., et al.: Facile synthesis of Fe3O4/MWCNTs by spontaneous redox and their catalytic performance. Nanotechnology 21 (2010)

    Google Scholar 

  40. Santillo, D., et al.: Microplastics as contaminants in commercially important seafood species. Integr. Environ. Assess. 13, 516–521 (2017)

    Article  Google Scholar 

  41. Cole, M., et al.: Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011)

    Article  Google Scholar 

  42. Pawlak, J., et al.: Fate of platinum metals in the environment. J. Trace Elements Med. Biol. 28247–28254

    Google Scholar 

  43. Zimmermann, S., Sures, B.: Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ. Sci. Pollut. Res. 11, 194–199 (2004)

    Article  Google Scholar 

  44. Griffin, S., et al.: Natural nanoparticles: a particular matter inspired by nature: a review. Antioxidants 7(3), 1–21 (2018)

    Google Scholar 

  45. Hatami, M., et al.: Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants: a review. Sci. Total Environ. 571, 275–329 (2016)

    Article  ADS  Google Scholar 

  46. Ferin, J.O. et al.: Increased pulmonary toxicity of ultrafine particles I. Particle clearance, translocation, morphology. J. Aerosol Sci. 21, 381–384 (1990)

    Google Scholar 

  47. Oberdörster, G.: Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhalation Toxicol. 8, 73–81 (1996)

    Google Scholar 

  48. Mossman, B.T., et al.: Asbestos: scientific developments and implications for public policy. Science 247(4940), 294–301 (1990)

    Article  ADS  Google Scholar 

  49. Zhang, W.: Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003)

    Article  ADS  Google Scholar 

  50. Nanotechnologies: a preliminary risk analysis on the basis of a preliminary workshop in Brussels on 1–2 March by the Health and Consumer Protection Directorate General of the European Commission, European Commission, 2004. www.europa.eu.int/comm/health/ph_risk/documents/ev_20040301_en.pdf. www.oecd.org/chemicalsafety/nanosafety/44108334.pdf. Accessed 05 May 2020

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, U. et al. (2021). Historical Background, Development and Preparation of Nanomaterials. In: Tahir, M.B., Rafique, M., Sagir, M. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9437-3_1

Download citation

Publish with us

Policies and ethics