Skip to main content

Management and Manufacturing Process of Biologics

  • Chapter
  • First Online:
Competitive Strategies in Life Sciences

Part of the book series: New Paradigms of Living Systems ((NPLS,volume 1))

  • 298 Accesses

Abstract

The definition of biologic has persistently being updated with the marketing of new product derived from engineered living resources. However, in broader sense biologic can be defined as any therapeutic complex biomolecule manufactured in, extracted from, or semi-synthesized from genetically engineered biological sources. Types of biologic drugs include vaccines, blood, blood components, cells, allergens, somatic cells, tissues, and recombinant proteins. The ward biologic is often referred as biopharmaceutical. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances. The host cells for biologics include microbes, insects, animal cells, mammalian cells, and plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anné J, Maldonado B, Van Impe J, Van Mellaert L, Bernaerts K (2012) Recombinant protein production and streptomycetes. J Biotechnol 158:159–167

    Article  Google Scholar 

  • Arakawa T, Yu J, Chong DKX, Hough J, Engen PC, Langridge WHR (1998) A plant – based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol 16:934–938

    Article  CAS  Google Scholar 

  • Azam A, Li C, Metcalf KJ, Tullman-Ercek D (2015) Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins. Biotechnol Bioeng 113:2313–2320

    Article  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  • Baneyx F (2004) Protein expression technologies: current status and future trends. Taylor & Francis, New York

    Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    Article  CAS  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev 12:381–390

    CAS  Google Scholar 

  • Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359. https://doi.org/10.1038/nrmicro3456

    Article  CAS  PubMed  Google Scholar 

  • Fang C-Y, Wu C-C, Fang C-L, Chen W-Y, Chen C-L (2017) Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS ONE 1(6):e0178960. https://doi.org/10.1371/journal.pone.0178960

    Article  CAS  Google Scholar 

  • Gaydhane MK, Mahanta U, Sharma CS, Khandelwal M, Ramakrishna S (2018) Cultured meat: state of the art and future. Biomanuf Rev 3:1. https://doi.org/10.1007/s40898-018-0005-1

    Article  Google Scholar 

  • Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS (2007) Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 25(9):401–408

    Article  CAS  Google Scholar 

  • Hartley JL (2012) Why proteins in mammalian cells? Methods Mol Biol 801:1–12

    Article  CAS  Google Scholar 

  • Hatada Y, Hidaka Y, Nogi Y, Uchimura K, Katayama K, Li Z et al (2004) Hyper-production of an isomalto-dextranase of an Arthrobacter sp by a proteases-deficient Bacillus subtilis: sequencing, properties, and crystallization of the recombinant enzyme. Appl Microbiol Biotechnol 65:583–592

    Article  CAS  Google Scholar 

  • Huang M, Bao J, Nielsen J (2014) Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects. Pharm Bioprocess 2:167–182

    Article  Google Scholar 

  • IntechOpen. (n.d.) Culture conditions and types of growth media for mammalian cells. IntechOpen. https://www.intechopen.com/books/biomedical-tissue-culture/culture-conditions-and-types-of-growth-media-for-mammalian-cells

  • Jozala AF, Geraldes DC, Tundisi LL, de Feitosa VA, Breyer CA, Cardoso SL, Mazzola PG, de Oliveira-Nascimento L, de Rangel-Yagui CO, de Magalhães PO et al (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 47:51–63

    Article  CAS  Google Scholar 

  • Kang Z, Yang S, Du G, Chen J (2014) Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41:1599–1607

    Article  CAS  Google Scholar 

  • Lee JS, Park HJ, Kim YH, Lee GM (2010) Protein reference mapping of dihydrofolatereductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis. Proteomics 10(12):2292–2302

    Article  CAS  Google Scholar 

  • Natale P, Brüser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochem Biophys Acta 1778:1735–1756

    Article  CAS  Google Scholar 

  • Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 172(1):55–65

    Article  CAS  Google Scholar 

  • Nielsen J (2013) Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4:207–211

    Article  Google Scholar 

  • Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Article  CAS  Google Scholar 

  • Öztürk S, Ḉalık P, Özdamar TH (2016a) Fed-batch biomolecule production by Bacillus subtilis: a state-of-the-art review. Trends Biotechnol 34:329–345

    Article  Google Scholar 

  • Öztürk S, Ḉalık P, Özdamar TH (2016b) Fed-batch biomolecule production by Bacillus subtilis: a state-of-the-art review. Trends Biotechnol 34:329–345

    Article  Google Scholar 

  • Park S, Schumann W (2015) Optimization of the secretion pathway for heterologous proteins in Bacillus subtilis. Biotechnol Bioprocess Eng 20:623–633

    Article  CAS  Google Scholar 

  • Persistence Market Research (2017) Serum-free media market: global industry trend analysis 2012 to 2017 and forecast 2017-2025. https://www.persistencemarketresearch.com/market-research/serum-free-media-market.asp

  • Pichia Produced Products (2018) Available online http://www.pichia.com/science-center/commercialized-products/. Accessed 3 February 2018

  • Reed B, Chen R (2013a) Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. Res Microbiol 164:675–682

    Article  CAS  Google Scholar 

  • Reed B, Chen R (2013b) Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. Res Microbiol 164:675–682

    Article  CAS  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  • Wang A, Lu SD, Mark DF (1984) Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science 224:1431–1433

    Article  CAS  Google Scholar 

  • Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochem Biophys Acta 1694:299–310

    Article  CAS  Google Scholar 

  • World Health Organization (1992) Annex 1 (WHO Technical Report Series, No. 822). http://www.who.int/biologicals/publications/trs/areas/vaccines/gmp/WHO_TRS_822_A1.pdf?ua=1. Accessed 8 November 2015

  • Wurm FM, Hacker D (2011) First CHO genome. Nat Biotechnol 29(8):718–720

    Article  CAS  Google Scholar 

  • Yanagita M, Nakayama K, Takeuchi T (1992) Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the non-endocrine cell line, COS-7. FEBS Lett 311:55–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B.K., Prasad, R., Behera, S. (2020). Management and Manufacturing Process of Biologics. In: Competitive Strategies in Life Sciences. New Paradigms of Living Systems, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-15-7590-7_2

Download citation

Publish with us

Policies and ethics